
The Geochemist’s Workbench®

Release 17

ChemPlugin™
User’s Guide





The Geochemist’s Workbench®

Release 17

ChemPlugin™
User’sGuide

Craig M. Bethke
Aqueous Solutions, LLC

Champaign, Illinois

Printed October 9, 2023



This document © Copyright 2023 by Aqueous Solutions LLC. All rights reserved. Earlier editions
copyright 2000–2021. This document may be reproduced freely to support any licensed use of
the GWB software package.

Software copyright notice: Programs GSS, Rxn, Act2, Tact, SpecE8, Gtplot, TEdit, React, Phase2,
P2plot, X1t, X2t, Xtplot, and ChemPlugin © Copyright 1983–2023 by Aqueous Solutions LLC. An
unpublished work distributed via trade secrecy license. All rights reserved under the copyright laws.

The Geochemist’s Workbench®, ChemPlugin�, We put bugs in our software�, and The
Geochemist’s Spreadsheet� are a registered trademark and trademarks of Aqueous Solutions
LLC; Microsoft®, MS®, Windows 11®, and Windows 10® are registered trademarks of
Microsoft Corporation; PostScript® is a registered trademark of Adobe Systems, Inc. Other
products mentioned in this document are identified by the trademarks of their respective
companies; the authors disclaim responsibility for specifying which marks are owned by which
companies. The software uses zlib © 1995-2005 Jean-Loup Gailly and Mark Adler, and Expat ©
1998-2006 Thai Open Source Center Ltd. and Clark Cooper.

The GWB software was originally developed by the students, staff, and faculty of the
Hydrogeology Program in the Department of Geology at the University of Illinois
Urbana-Champaign. The package is currently developed and maintained by Aqueous Solutions
LLC at the University of Illinois Research Park.

Address inquiries to

Aqueous Solutions LLC
301 North Neil Street, Suite 400
Champaign, IL 61820 USA

Warranty: The Aqueous Solutions LLC warrants only that it has the right to convey license to the
GWB software. Aqueous Solutions makes no other warranties, express or implied, with respect to
the licensed software and/or associated written documentation. Aqueous Solutions disclaims any
express or implied warranties of merchantability, fitness for a particular purpose, and
non-infringement. Aqueous Solutions does not warrant, guarantee, or make any representations
regarding the use, or the results of the use, of the Licensed Software or documentation in terms
of correctness, accuracy, reliability, currentness, or otherwise. Aqueous Solutions shall not be
liable for any direct, indirect, consequential, or incidental damages (including damages for loss of
profits, business interruption, loss of business information, and the like) arising out of any claim
by Licensee or a third party regarding the use of or inability to use Licensed Software. The entire
risk as to the results and performance of Licensed Software is assumed by the Licensee. See
License Agreement for complete details.

License Agreement: Use of the GWB is subject to the terms of the accompanying License
Agreement. Please refer to that Agreement for details.

Cover photo: Salinas de Janubio by Jorg Hackemann.



Contents

Chapter List

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Titration Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Retrieving Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Direct Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Extending Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 React Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Linking Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9 Flow and Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

10 Diffusion and Dispersion . . . . . . . . . . . . . . . . . . . . . . . . 63

11 Advection-Dispersion Model . . . . . . . . . . . . . . . . . . . . . . 77

12 Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

13 Reactive Transport Model . . . . . . . . . . . . . . . . . . . . . . . . 103

14 Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

15 Cluster Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

16 Hybrid Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Appendix: ChemPlugin Setup . . . . . . . . . . . . . . . . . . . . . . . 155

Appendix: Member Functions . . . . . . . . . . . . . . . . . . . . . . . 159

Appendix: Configuration Commands . . . . . . . . . . . . . . . . . . . 215

Appendix: Report Function . . . . . . . . . . . . . . . . . . . . . . . . . 267

v



Appendix: Units Recognized . . . . . . . . . . . . . . . . . . . . . . . . 281

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

vi



Contents

1 Introduction 1
1.1 How it works . . . . . . . . . . . 1
1.2 Advantages . . . . . . . . . . . . 2
1.3 Languages supported . . . . . . 4

2 Overview 7
2.1 Creating and destroying instances 7

2.1.1 Deleting instances . . . . . . 7
2.1.2 Console messages . . . . . . 8
2.1.3 Option flags . . . . . . . . . . 9
2.1.4 Environmental variables . . . 9

2.2 Controlling instances . . . . . . . 9
2.2.1 Configuringand initializingan

instance . . . . . . . . . . . . 10
2.2.2 Linking instances . . . . . . . 10
2.2.3 Time marching . . . . . . . . 11
2.2.4 Console messages . . . . . . 12
2.2.5 Retrieving results . . . . . . . 12
2.2.6 Output streams . . . . . . . . 13

2.3 Example program . . . . . . . . 13
2.4 Using this Guide . . . . . . . . . 15

3 Titration Simulator 17
3.1 Program structure . . . . . . . . 17
3.2 Client program . . . . . . . . . . 17

3.2.1 Configuration step . . . . . . 18
3.2.2 Initialization step . . . . . . . 19
3.2.3 Time marching loop . . . . . 19

3.3 Running the example program . 20
3.4 Assembled C++ code . . . . . . 21
3.5 Generalization . . . . . . . . . . 22

4 Retrieving Results 23
4.1 Report()familyofmemberfunctions 23

4.1.1 Scalar values . . . . . . . . . 24

4.1.2 Vector quantities . . . . . . . 25
4.1.3 NULL target . . . . . . . . . . 26

4.2 An example . . . . . . . . . . . . 26
4.3 Source code . . . . . . . . . . . 29

5 Direct Output 31
5.1 Scheduling output . . . . . . . . 31
5.2 Self-scheduled output . . . . . . 32

5.2.1 Print output . . . . . . . . . . 32
5.2.2 Plot output . . . . . . . . . . 32

5.3 On-demand output . . . . . . . . 32
5.3.1 Print output . . . . . . . . . . 33
5.3.2 Plot output . . . . . . . . . . 34

5.4 Contents of print-format output . 36
5.5 Source code . . . . . . . . . . . 36

6 Extending Runs 37
6.1 Extending a titration . . . . . . . 37
6.2 C++ source code . . . . . . . . . 39

7 React Emulator 41
7.1 Program structure . . . . . . . . 41
7.2 Main program . . . . . . . . . . . 42

7.2.1 Input loop . . . . . . . . . . . 42
7.2.2 Time marching loop . . . . . 43

7.3 Running the example program . 44
7.4 mReact C++ code . . . . . . . . 45

8 Linking Instances 47
8.1 Linking instances . . . . . . . . . 47
8.2 Free outlets . . . . . . . . . . . . 48
8.3 Removing links . . . . . . . . . . 48
8.4 Example programs . . . . . . . . 49

8.4.1 Linear chain . . . . . . . . . . 49
8.4.2 Grid . . . . . . . . . . . . . . 50

vii



Contents

8.4.3 Bifurcating tree . . . . . . . . 52
8.4.4 C++ source code . . . . . . . 54

9 Flow and Transport 55
9.1 Flow rate . . . . . . . . . . . . . 55

9.1.1 Setting the flow rate . . . . . 55
9.1.2 Retrieving the flow rate . . . 56
9.1.3 Steady and transient flow . . 56

9.2 Stability . . . . . . . . . . . . . . 56
9.3 Flow-through reactor . . . . . . . 57

9.3.1 Program structure . . . . . . 58
9.3.2 Inlet fluid . . . . . . . . . . . 58
9.3.3 Stirred reactor . . . . . . . . 59
9.3.4 Links and flow rates . . . . . 59
9.3.5 Time marching loop . . . . . 59
9.3.6 Program output . . . . . . . . 60
9.3.7 C++ source code . . . . . . . 61

10 Diffusion and Dispersion 63
10.1 Transmissivity . . . . . . . . . . . 63

10.1.1 Determining transmissivity . . 64
10.1.2 Setting transmissivity . . . . . 65
10.1.3 Retrieving the transmissivity 65

10.2 Numerical stability . . . . . . . . 66
10.3 Model of diffusion . . . . . . . . 67

10.3.1 Program structure . . . . . . 67
10.3.2 Output function . . . . . . . . 68
10.3.3 Simulation parameters . . . . 69
10.3.4 Output file . . . . . . . . . . . 69
10.3.5 Configuring and initializing

instances . . . . . . . . . . . 70
10.3.6 Linking instances . . . . . . . 71
10.3.7 Time marching loop . . . . . 71
10.3.8 Running the client . . . . . . 72
10.3.9 C++ source code . . . . . . . 73

11 Advection-Dispersion Model 77
11.1 Numerical stability . . . . . . . . 77
11.2 Advection-dispersion model . . . 78

11.2.1 Program structure . . . . . . 78
11.2.2 Simulation parameters . . . . 79
11.2.3 Configure and initialize in-

stances . . . . . . . . . . . . 80
11.2.4 Link the instances . . . . . . 81

11.3 Running the model . . . . . . . . 81

11.4 C++ source code . . . . . . . . . 82

12 Heat Transfer 87
12.1 Initial temperature . . . . . . . . 87
12.2 Temperature calculation . . . . . 88

12.2.1 Advective transfer . . . . . . 89
12.2.2 Conductive transfer . . . . . 89
12.2.3 Heat sources . . . . . . . . . 90
12.2.4 Stability . . . . . . . . . . . . 90
12.2.5 Time marching loop . . . . . 90

12.3 Externally prescribed temperature 91
12.4 Model of heat conduction . . . . 91

12.4.1 Simulation parameters . . . . 92
12.4.2 Configuring and initializing

instances . . . . . . . . . . . 92
12.4.3 Linking instances . . . . . . . 93
12.4.4 Time marching loop . . . . . 93
12.4.5 Running the client . . . . . . 94

12.5 Model of advective heat transfer 94
12.5.1 Simulation parameters . . . . 94
12.5.2 Configuring and initializing

instances . . . . . . . . . . . 94
12.5.3 Linking instances . . . . . . . 95
12.5.4 Time marching loop . . . . . 95
12.5.5 Running the client . . . . . . 96

12.6 C++ source code . . . . . . . . . 96
12.6.1 Heat conduction code . . . . 96
12.6.2 Advective heat transfer code 99

13 Reactive Transport Model 103
13.1 Program structure . . . . . . . . 103
13.2 Output function . . . . . . . . . . 104
13.3 Simulation parameters . . . . . . 105
13.4 Create instances . . . . . . . . . 105
13.5 Configure instances . . . . . . . 106
13.6 Initialize instances . . . . . . . . 107
13.7 Set transport parameters . . . . 107
13.8 Link the instances . . . . . . . . 108
13.9 Time marching loop . . . . . . . 108
13.10 Running the model . . . . . . . . 109
13.11 C++ source code . . . . . . . . . 109

14 Multithreading 115
14.1 Code changes . . . . . . . . . . 115

14.1.1 Header files . . . . . . . . . . 115

viii



Contents

14.1.2 Number of instances . . . . . 116
14.1.3 Instantiation . . . . . . . . . . 116
14.1.4 Configuration . . . . . . . . . 117
14.1.5 Initialization . . . . . . . . . . 118
14.1.6 Linking . . . . . . . . . . . . . 118
14.1.7 Loop scheduling . . . . . . . 119
14.1.8 Time marching loop . . . . . 120

14.2 Speedup . . . . . . . . . . . . . 121
14.3 C++ source code . . . . . . . . . 121

15 Cluster Computing 127
15.1 MPI protocol . . . . . . . . . . . 127
15.2 ChemPlugin under MPI . . . . . 128

15.2.1 Initializing MPI . . . . . . . . 128
15.2.2 Instantiation . . . . . . . . . . 128
15.2.3 Assigning rank . . . . . . . . 129
15.2.4 Calling member functions . . 130
15.2.5 Transferring data . . . . . . . 131
15.2.6 Retrieving results . . . . . . . 132

15.3 Code changes . . . . . . . . . . 135
15.3.1 Header files . . . . . . . . . . 135
15.3.2 Ancillary functions . . . . . . 135
15.3.3 Client startup . . . . . . . . . 137
15.3.4 Instantiation . . . . . . . . . . 138
15.3.5 Work sharing loops . . . . . 138
15.3.6 Setting velocity . . . . . . . . 139
15.3.7 Linking . . . . . . . . . . . . . 139
15.3.8 Time marching loop . . . . . 140

15.4 Running the example . . . . . . 141
15.5 C++ source code . . . . . . . . . 142

16 Hybrid Parallelization 147
16.1 Loop scheduling . . . . . . . . . 147
16.2 Running the example . . . . . . 148
16.3 C++ source code . . . . . . . . . 148

Appendix: ChemPlugin Setup 155
A.1 Preliminaries . . . . . . . . . . . 155

A.1.1 Install ChemPlugin . . . . . . 155
A.1.2 Launchdevelopmentenviron-

ment . . . . . . . . . . . . . . 156
A.2 Running a Client Program . . . 156

A.2.1 C++ . . . . . . . . . . . . . . 157
A.2.2 FORTRAN . . . . . . . . . . . 158
A.2.3 Python . . . . . . . . . . . . . 158

Appendix: Member Functions 159
B.1 C++ . . . . . . . . . . . . . . . . 160

B.1.1 Configuring and initializing
instances . . . . . . . . . . . 161

B.1.1.1 Config() . . . . . . . . . . 161
B.1.1.2 Initialize() . . . . . . . . . 161

B.1.2 Linking instances . . . . . . . 162
B.1.2.1 Link() . . . . . . . . . . . . 162
B.1.2.2 Outlet() . . . . . . . . . . . 163
B.1.2.3 Unlink() . . . . . . . . . . 163
B.1.2.4 ClearLinks() . . . . . . . . 164
B.1.2.5 nLinks() . . . . . . . . . . 164
B.1.2.6 nOutlets() . . . . . . . . . 165

B.1.3 Transport across links . . . . 165
B.1.3.1 FlowRate() . . . . . . . . . 165
B.1.3.2 Transmissivity() . . . . . . 166
B.1.3.3 HeatTrans() . . . . . . . . 166

B.1.4 Time marching loop . . . . . 166
B.1.4.1 ReportTimeStep() . . . . . 167
B.1.4.2 AdvanceTimeStep() . . . 167
B.1.4.3 AdvanceTransport() . . . . 167
B.1.4.4 AdvanceHeatTransport() . 167
B.1.4.5 AdvanceChemical() . . . . 168
B.1.4.6 SlideFugacity() . . . . . . 168
B.1.4.7 SlideTemperature() . . . . 168
B.1.4.8 ExtendRun() . . . . . . . . 168

B.1.5 Retrieving results . . . . . . . 169
B.1.5.1 Report() . . . . . . . . . . 169
B.1.5.2 Report1(),Report1i(),and

Report1c() . . . . . . . . . 169
B.1.6 Output streams . . . . . . . . 170

B.1.6.1 Console() . . . . . . . . . 170
B.1.6.2 PrintOutput() . . . . . . . 171
B.1.6.3 PlotHeader() . . . . . . . . 171
B.1.6.4 PlotBlock() . . . . . . . . . 172
B.1.6.5 PlotTrailer() . . . . . . . . 172

B.1.7 Convenience . . . . . . . . . 172
B.1.7.1 Version() . . . . . . . . . . 172
B.1.7.2 ConvertUnit() . . . . . . . 172

B.1.8 Cluster computing . . . . . . 173
B.1.8.1 MpiAssign() . . . . . . . . 173
B.1.8.2 MpiOnRank() . . . . . . . 174
B.1.8.3 MpiRank() . . . . . . . . . 174
B.1.8.4 MpiReport() . . . . . . . . 174

ix



Contents

B.1.8.5 MpiReport1(), MpiRe-
port1i(), MpiReport1c() . . 175

B.1.8.6 MpiUpdateLink() . . . . . 175
B.2 FORTRAN . . . . . . . . . . . . 177

B.2.1 Instantiation . . . . . . . . . . 177
B.2.2 Configuring and initializing

instances . . . . . . . . . . . 178
B.2.2.1 Config() . . . . . . . . . . 178
B.2.2.2 Initialize() . . . . . . . . . 179

B.2.3 Linking instances . . . . . . . 179
B.2.3.1 Link() . . . . . . . . . . . . 180
B.2.3.2 Outlet() . . . . . . . . . . . 181
B.2.3.3 Unlink() . . . . . . . . . . 182
B.2.3.4 ClearLinks() . . . . . . . . 183
B.2.3.5 nLinks() . . . . . . . . . . 183
B.2.3.6 nOutlets() . . . . . . . . . 184

B.2.4 Transport across links . . . . 184
B.2.4.1 FlowRate() . . . . . . . . . 184
B.2.4.2 Transmissivity() . . . . . . 185
B.2.4.3 HeatTrans() . . . . . . . . 186

B.2.5 Time marching loop . . . . . 186
B.2.5.1 ReportTimeStep() . . . . . 186
B.2.5.2 AdvanceTimeStep() . . . 187
B.2.5.3 AdvanceTransport() . . . . 187
B.2.5.4 AdvanceHeatTransport() . 187
B.2.5.5 AdvanceChemical() . . . . 188
B.2.5.6 SlideFugacity() . . . . . . 188
B.2.5.7 SlideTemperature() . . . . 188
B.2.5.8 ExtendRun() . . . . . . . . 189

B.2.6 Retrieving results . . . . . . . 189
B.2.6.1 Report() . . . . . . . . . . 189
B.2.6.2 Report1(),Report1i(),and

Report1c() . . . . . . . . . 191
B.2.7 Output streams . . . . . . . . 191

B.2.7.1 Console() . . . . . . . . . 192
B.2.7.2 PrintOutput() . . . . . . . 192
B.2.7.3 PlotHeader() . . . . . . . . 193
B.2.7.4 PlotBlock() . . . . . . . . . 194
B.2.7.5 PlotTrailer() . . . . . . . . 194

B.2.8 Convenience . . . . . . . . . 194
B.2.8.1 Version() . . . . . . . . . . 194
B.2.8.2 ConvertUnit() . . . . . . . 195

B.2.9 Cluster computing . . . . . . 196
B.2.9.1 MpiAssign() . . . . . . . . 196

B.2.9.2 MpiOnRank() . . . . . . . 196
B.2.9.3 MpiRank() . . . . . . . . . 197
B.2.9.4 MpiReport() . . . . . . . . 197
B.2.9.5 MpiReport1(), MpiRe-

port1i(), MpiReport1c() . . 198
B.2.9.6 MpiUpdateLink() . . . . . 199

B.3 Python . . . . . . . . . . . . . . . 201
B.3.1 Configuring and initializing

instances . . . . . . . . . . . 201
B.3.1.1 Config() . . . . . . . . . . 201
B.3.1.2 Initialize() . . . . . . . . . 202

B.3.2 Linking instances . . . . . . . 202
B.3.2.1 Link() . . . . . . . . . . . . 202
B.3.2.2 Outlet() . . . . . . . . . . . 203
B.3.2.3 Unlink() . . . . . . . . . . 204
B.3.2.4 ClearLinks() . . . . . . . . 204
B.3.2.5 nLinks() . . . . . . . . . . 205
B.3.2.6 nOutlets() . . . . . . . . . 205

B.3.3 Transport across links . . . . 205
B.3.3.1 FlowRate() . . . . . . . . . 206
B.3.3.2 Transmissivity() . . . . . . 206
B.3.3.3 HeatTrans() . . . . . . . . 207

B.3.4 Time marching loop . . . . . 207
B.3.4.1 ReportTimeStep() . . . . . 207
B.3.4.2 AdvanceTimeStep() . . . 207
B.3.4.3 AdvanceTransport() . . . . 208
B.3.4.4 AdvanceHeatTransport() . 208
B.3.4.5 AdvanceChemical() . . . . 208
B.3.4.6 SlideFugacity() . . . . . . 208
B.3.4.7 SlideTemperature() . . . . 209
B.3.4.8 ExtendRun() . . . . . . . . 209

B.3.5 Retrieving results . . . . . . . 209
B.3.5.1 Report() . . . . . . . . . . 209
B.3.5.2 Report1() . . . . . . . . . 210

B.3.6 Output streams . . . . . . . . 210
B.3.6.1 Console() . . . . . . . . . 211
B.3.6.2 PrintOutput() . . . . . . . 211
B.3.6.3 PlotHeader() . . . . . . . . 212
B.3.6.4 PlotBlock() . . . . . . . . . 212
B.3.6.5 PlotTrailer() . . . . . . . . 212

B.3.7 Convenience . . . . . . . . . 213
B.3.7.1 Version() . . . . . . . . . . 213
B.3.7.2 ConvertUnit() . . . . . . . 213

Appendix: Configuration Commands 215

x



Contents

C.1 Comparison to React . . . . . . 215
C.1.1 Default values . . . . . . . . 215
C.1.2 Omitted commands . . . . . 216
C.1.3 Additional commands . . . . 216

C.2 Command reference . . . . . . . 217
C.2.1 <unit> . . . . . . . . . . . . . 217
C.2.2 <isotope> . . . . . . . . . . . 218
C.2.3 activity . . . . . . . . . . . . . 219
C.2.4 add . . . . . . . . . . . . . . . 219
C.2.5 adjust_mass . . . . . . . . . . 219
C.2.6 adjust_rate . . . . . . . . . . 220
C.2.7 alkalinity . . . . . . . . . . . . 220
C.2.8 alter . . . . . . . . . . . . . . 221
C.2.9 b-dot . . . . . . . . . . . . . . 222
C.2.10 balance . . . . . . . . . . . . 222
C.2.11 carbon-13 . . . . . . . . . . . 222
C.2.12 chdir . . . . . . . . . . . . . . 223
C.2.13 conductivity . . . . . . . . . . 223
C.2.14 couple . . . . . . . . . . . . . 223
C.2.15 Courant . . . . . . . . . . . . 224
C.2.16 cpr . . . . . . . . . . . . . . . 224
C.2.17 cpu_max . . . . . . . . . . . . 224
C.2.18 cpw . . . . . . . . . . . . . . 225
C.2.19 data . . . . . . . . . . . . . . 225
C.2.20 decouple . . . . . . . . . . . 225
C.2.21 delQ . . . . . . . . . . . . . . 225
C.2.22 delxi . . . . . . . . . . . . . . 226
C.2.23 density . . . . . . . . . . . . . 226
C.2.24 dual_porosity . . . . . . . . . 227
C.2.25 dump . . . . . . . . . . . . . . 228
C.2.26 dx_init . . . . . . . . . . . . . 229
C.2.27 dxplot . . . . . . . . . . . . . 229
C.2.28 dxprint . . . . . . . . . . . . . 229
C.2.29 Eh . . . . . . . . . . . . . . . 230
C.2.30 end-dump . . . . . . . . . . . 230
C.2.31 epsilon . . . . . . . . . . . . . 230
C.2.32 exchange_capacity . . . . . . 230
C.2.33 explain . . . . . . . . . . . . . 231
C.2.34 explain_step . . . . . . . . . . 231
C.2.35 extrapolate . . . . . . . . . . 231
C.2.36 fix . . . . . . . . . . . . . . . 232
C.2.37 flash . . . . . . . . . . . . . . 232
C.2.38 flow-through . . . . . . . . . . 232
C.2.39 flush . . . . . . . . . . . . . . 232

C.2.40 fugacity . . . . . . . . . . . . 233
C.2.41 h-m-w . . . . . . . . . . . . . 233
C.2.42 heat_source . . . . . . . . . . 233
C.2.43 hydrogen-2 . . . . . . . . . . 234
C.2.44 inert . . . . . . . . . . . . . . 235
C.2.45 isotope_data . . . . . . . . . 235
C.2.46 itmax . . . . . . . . . . . . . . 236
C.2.47 Kd . . . . . . . . . . . . . . . 236
C.2.48 kinetic . . . . . . . . . . . . . 236
C.2.49 log . . . . . . . . . . . . . . . 240
C.2.50 mobility . . . . . . . . . . . . 240
C.2.51 no-precip . . . . . . . . . . . 241
C.2.52 nswap . . . . . . . . . . . . . 242
C.2.53 oxygen-18 . . . . . . . . . . . 242
C.2.54 pause . . . . . . . . . . . . . 242
C.2.55 pe . . . . . . . . . . . . . . . 242
C.2.56 permeability . . . . . . . . . . 243
C.2.57 pH . . . . . . . . . . . . . . . 244
C.2.58 phrqpitz . . . . . . . . . . . . 244
C.2.59 pickup . . . . . . . . . . . . . 244
C.2.60 pitz_dgamma . . . . . . . . . 245
C.2.61 pitz_precon . . . . . . . . . . 245
C.2.62 pitz_relax . . . . . . . . . . . 245
C.2.63 plot . . . . . . . . . . . . . . . 246
C.2.64 pluses . . . . . . . . . . . . . 246
C.2.65 porosity . . . . . . . . . . . . 246
C.2.66 precip . . . . . . . . . . . . . 247
C.2.67 press_model . . . . . . . . . 247
C.2.68 pressure . . . . . . . . . . . . 247
C.2.69 print . . . . . . . . . . . . . . 248
C.2.70 pwd . . . . . . . . . . . . . . 248
C.2.71 ratio . . . . . . . . . . . . . . 248
C.2.72 react . . . . . . . . . . . . . . 249
C.2.73 reactants . . . . . . . . . . . 250
C.2.74 read . . . . . . . . . . . . . . 250
C.2.75 remove . . . . . . . . . . . . 251
C.2.76 report . . . . . . . . . . . . . 251
C.2.77 reset . . . . . . . . . . . . . . 251
C.2.78 resize . . . . . . . . . . . . . 251
C.2.79 save . . . . . . . . . . . . . . 252
C.2.80 script . . . . . . . . . . . . . . 252
C.2.81 segregate . . . . . . . . . . . 253
C.2.82 show . . . . . . . . . . . . . . 253
C.2.83 simax . . . . . . . . . . . . . 254

xi



Contents

C.2.84 slide . . . . . . . . . . . . . . 254
C.2.85 solid_solution . . . . . . . . . 255
C.2.86 sorbate . . . . . . . . . . . . 256
C.2.87 span . . . . . . . . . . . . . . 256
C.2.88 start_date . . . . . . . . . . . 258
C.2.89 start_time . . . . . . . . . . . 258
C.2.90 step_increase . . . . . . . . . 258
C.2.91 step_max . . . . . . . . . . . 259
C.2.92 suffix . . . . . . . . . . . . . . 259
C.2.93 sulfur-34 . . . . . . . . . . . . 259
C.2.94 suppress . . . . . . . . . . . . 259
C.2.95 surface_capacitance . . . . . 260
C.2.96 surface_data . . . . . . . . . 261
C.2.97 surface_potential . . . . . . . 261
C.2.98 swap . . . . . . . . . . . . . . 262
C.2.99 TDS . . . . . . . . . . . . . . 262
C.2.100temperature . . . . . . . . . . 263
C.2.101theta . . . . . . . . . . . . . . 263
C.2.102timax . . . . . . . . . . . . . . 263
C.2.103time . . . . . . . . . . . . . . 264
C.2.104title . . . . . . . . . . . . . . . 264
C.2.105unalter . . . . . . . . . . . . . 264
C.2.106unsegregate . . . . . . . . . . 264
C.2.107unsuppress . . . . . . . . . . 265
C.2.108unswap . . . . . . . . . . . . 265
C.2.109volume . . . . . . . . . . . . . 265
C.2.110Xstable . . . . . . . . . . . . 266

Appendix: Report Function 267

Appendix: Units Recognized 281

Index 287

xii



Introduction

ChemPlugin is a self-linking software object designed to add multicomponent reactive
transport capabilities to any program that models the flow of an aqueous fluid. You can
use ChemPlugin objects, in other words, to convert a flow model into a multicomponent
reactive transport simulator. Whether you are developing a software application from
scratch, or adapting an existing modeling program, ChemPlugin is the fastest and
easiest way to create full-functioned reactive transport modeling software.

1.1 How it works
ChemPlugin is surprisingly easy to use. Your client program—the flow model—spawns
any number of ChemPlugin instances, an instance being a copy of the ChemPlugin
object (Figure 1.1). Each instance represents a portion of the system being modeled:
a piece of the subsurface, a length of pipe, a volume of water in a lake or ocean, a
reactor tank in a water treatment plant, and so on.

Figure 1.1 A client program may spawn (a) a single ChemPlugin instance, (b) an arbitrary
number of ChemPlugin instances, or (c) a number of ChemPlugin instances
that self-link into any configuration.

1



ChemPlugin User’s Guide

Once created, the ChemPlugin instances self-link into a network that represents the
system being modeled (Figure 1.2). The client program at a minimum specifies the rate
at which fluid flows across each link. The client can also set at each link transmissivities
representing diffusion, physical mixing during flow, and heat conduction.

Then, as it marches forward in time, the client prompts each instance to perform
essential steps: reporting the optimum time step size, transporting mass, transferring
heat, and solving the equations describing chemical reaction. Notably, each such step
is accomplished in the client program with a single line of code. Instead of performing
the calculations itself, the client simply triggers the instances to do so.

1.2 Advantages
ChemPlugin is designed to save you time and money. In programming multicomponent
reaction into a flow model, whether within an existing code or an application under
development, ChemPlugin offers compelling advantages to hand coding, or using
less-capable software objects:

Self-linking. ChemPlugin objects are self-linking and hence object instances can
organize and re organize themselves instantly into any desired geometry.

Transport. Once self-linked, the object instances handle mass and heat transport
among themselves, eliminating most of the programming overhead required to
implement multicomponent chemistry within a flow model.

Memory management. Cutting edge memory management allows a >100,000
ChemPlugin instances to run together on a simple laptop, and many more on a
workstation or cluster.

Multithreading. ChemPlugin objects are thread-safe and ready for parallel
deployment. For >10,000 instances, tests show parallel speedups on a four-core
hyperthreaded processor of about �3.7 to �4.

Cluster computing. An MPI version of ChemPlugin is available for parallel
implementation on computing clusters. You may as well multithread a cluster
program to create a hybrid parallel client.

Rapid development. ChemPlugin consists of 70,000 lines of code pre-packaged
as an object. This is code your team need not write, debug, test, perfect, validate,
and document from scratch.

Ease of coding. ChemPlugin encapsulates the technical details, so your team can
build sophisticated applications without specific expertise in chemical modeling.

Completeness. Coding all the myriad aspects users demand of a chemical
modeling code into your application is a daunting task, but with ChemPlugin your
app arrives full-featured.

2



Introduction

Figure 1.2 Once spawned, ChemPlugin instances can self-link into virtually any geometry.
The examples shown include (a) a one-dimensional domain, (b) a curvilinear
chain, (c) a two-dimensional domain, (d) a three-dimensional domain, and (e)
a bifurcating tree.

Code fingerprints. ChemPlugin instances are controlled by a sleek API that
makes incorporating them into a client program a snap. The API’s light fingerprints
in your source code minimize development and support effort.

Memory footprint. The baseline memory footprints per ChemPlugin instance are
just 50 kilobytes (32 bit) and 65 kB (64 bit).

Reliability. ChemPlugin objects are derived directly from The Geochemist’s
Workbench® package, which is trusted worldwide and used at thousands of
installations in 97 countries.

Trust. The objects are subject to the same quality control program, including
daily automated testing, as the GWB.

3



ChemPlugin User’s Guide

Versatility.ChemPluginobjectscansolve thesamebroadgamutofmulticomponent
reaction problems as the GWB software package.

Flexibility. ChemPlugin comes with “thin wrappers” that make let appear as a
native C++, FORTRAN, or Python object. A single license serves all of these
languages.

No retraining. The broadly known interactive scripting employed by the GWB
configures ChemPlugin instances; hence, no retraining for engineers and scientists
is needed.

Common user interface. Users see a common interface to the geochemical
modeling aspects of all of an organization’s codes, reducing training and increasing
productivity and responsiveness.

Painless replication. Once implemented within one of an organization’s codes,
ChemPlugin’s capabilities can be readily transferred to other codes using the
knowledge and experience acquired in the initial deployment.

Thermodynamic datasets. ChemPlugin uses the open-format GWB thermo
datasets available for a variety of purposes from sources worldwide; the
datasets can be quickly manipulated with the TEdit application, reducing users’
time-to-solution.

Textbook. A clearly written, tutorial-based textbook carries the reader through a
series of specific examples that show how to set up progressively more powerful
client programs.

Reference Manual. The thorough but concise Reference Guide is organized,
accurate, and helpful.

Support. ChemPlugin is professionally supported by Aqueous Solutions LLC,
maker of the GWB software; there is no need to train and deploy expensive
support staff in-house.

1.3 Languages supported
The ChemPlugin software is supplied with a number of “thin wrappers” that provide for
its use in client programs written in a range of languages. The object itself is written
is C++, but by employing the corresponding wrapper, it can appear to a FORTRAN
client program to be written in FORTRAN, or to a Python client as a Python object. A
single copy of ChemPlugin, then, serves for a variety of uses — there is no need to
license additional versions of the software, just because the language you are using
changes.

ChemPlugin is currently distributed with wrappers for:

C++

4



Introduction

FORTRAN

Python

In the tutorials in this User’s Guide, we will work with client programs written in C++.
Significantly, however, a version of the client from each tutorial in any of the languages
above can be downloaded from the ChemPlugin.GWB.com website.

As well, you can download from this website multithreaded, cluster computing,
and hybrid multithreaded-cluster clients written in C++ and Fortran; Python does not
natively support parallel programming.

5



6



Overview

In this chapter, we look at a few specifics of how ChemPlugin instances can be deployed
within a client program. We conclude the chapter by writing a simple client program that
drives a single ChemPlugin instance. Later chapters build on this example, gradually
introducing new ways to take advantage of the power of the ChemPlugin object.

2.1 Creating and destroying instances
Creating a ChemPlugin instance is a simple matter of declaring it. For example, the
statement

ChemPlugin cp;

creates a reference “cp” to a ChemPlugin instance. When “cp” is created, it spawns
the instance to which it refers. Hence, bringing a variable of type ChemPlugin into
scope creates a ChemPlugin instance and sets a reference to it.

A client can similarly set a vector of ChemPlugin instances:

ChemPlugin cp[100];
or

ChemPlugin* cp = new ChemPlugin[100];
or

vector <ChemPlugin> cp;

In these cases, each element in the vector references a separate ChemPlugin instance:
“cp[0]” is the first instance, “cp[1]” is the second, and so on.

2.1.1 Deleting instances
In computer languages that feature “garbage collection,” you may decide to delete
ChemPlugin instances when you are done with them to immediately free memory for
other uses, but there is little compelling need to do so. In languages such as C++,
however, it is best practice to delete instances once they are no longer needed to
avoid the possibility of memory leaks. In either case, a client removes a ChemPlugin
instance from memory simply by deleting the reference to it.

7



ChemPlugin User’s Guide

When a client sets a reference to a ChemPlugin instance as an automatic variable,
the instance is created when the reference comes into scope, and deleted when it
goes out of scope. When a client executes a statement

ChemPlugin cp;

bringing a reference “cp” into scope, a ChemPlugin instance is created. Once “cp”
goes out of scope, both the reference and instance itself are deleted automatically.

When a client allocates a reference explicitly, however, it should delete it explicitly,
as well. For example, in the code

ChemPlugin* cp = new ChemPlugin;
... some code goes here ...
delete cp;

we allocate a ChemPlugin reference, then delete it and the associated instance when
we are finished using it. Similarly, we might allocate a vector of ChemPlugin instances

int nx = 100;
ChemPlugin* cp = new ChemPlugin[nx];
... some code goes here ...
delete[ ] cp;

and delete them after their purpose has been served.

2.1.2 Console messages
ChemPlugin instances run silently by default, but can be set to write console messages
that trace the instance’s actions and report any errors encountered.

To set an instance to begin writing messages as it starts up, a client specifies an
output stream as an argument at instantiation time. The outlet stream can be standard
output, standard error, or a dataset:

ChemPlugin cp("stdout");
or

ChemPlugin cp("stderr");
or

ChemPlugin cp("MyMessages.txt");

In these cases, console output is directed to the standard output, standard error, or a
text dataset.

Significantly, console messages can be turned on or off, or redirected, at any point
in the execution of a client program. The procedure for doing so is described in the
Controlling instances section.

8



Overview

2.1.3 Option flags
You can set option flags in an optional second argument to the constructor, following
the optional argument for specifying the output stream. For example:

ChemPlugin cp("stdout", "-d mythermo.tdat -s mysurface.sdat");
or

ChemPlugin cp("", "-d mythermo.tdat");
or

ChemPlugin cp(NULL, "-d mythermo.tdat");

The following option flags are available:

-cd Change the working directory to the directory containing the input script
specified with the -i option.

-i <input_script> Read initial input commands from the specified file.
-gtd <gtdata_dir> Set directory to search for thermodynamic datasets.
-cond <cond_data> Set the dataset for calculating electrical conductivity.
-d <thermo_data> Set the thermodynamic dataset.
-s <surf_data> Set a dataset of surface sorption reactions.

2.1.4 Environmental variables
You can specify various default settings for ChemPlugin by defining environment
variables. In a command line environment, you might, for example, issue the command

set CPI_THERMODATA=my_thermo.tdat

which would define “my_thermo.tdat” as the default thermodynamic dataset that loads
whenever a ChemPlugin object initializes. You set environmental variables globally
from the Windows Control Panel, under System ! Advanced system settings.

You can set the following environment variables:

CPI_GTDATA The directory where the apps will look for thermo datasets, if not found
in the working directory.

CPI_THERMODATA The default thermodynamic dataset.
CPI_CONDUCTIVITYDATA The dataset of coefficients for calculating electrical conductivity.
CPI_ISOTOPEDATA The dataset of isotope fractionation factors.
CPI_SURFACEDATA Dataset(s) of surface sorption reactions.

2.2 Controlling instances
A client program uses member functions to control a ChemPlugin instance. For example,
to set pH at an instance to 5, a client program might use the “Config()” member
function to pass the configuration command “pH = 5”:

9



ChemPlugin User’s Guide

ChemPlugin cp
cp.Config("pH = 5");

Similarly, member function “Initialize()”

cp.Initialize();

solves for the initial state of an instance, given its configuration.
Note the form of a member function call: the instance in question, the name of

the member function, and any arguments. Suppose a client needs to set pH at two
instances to different values:

ChemPlugin cp0, cp1;
cp0.Config("pH = 5");
cp1.Config("pH = 9");

Now, the fluid at “cp0” is slightly acidic, whereas at “cp1” it is slightly alkaline.
The remainder of this section provides an overview of the ChemPlugin member

functions. The Member Functions appendix to this User’s Guide provides a complete
list of the member functions and a full description of how each is used.

2.2.1 Configuring and initializing an instance
As already noted, a client uses the “Config()” member function to configure a
ChemPlugin instance, and “Initialize()” to initialize it. Function “Config()” takes a
configuration command as an argument. ChemPlugin’s configuration commands are
very similar to those used in The Geochemist’s Workbench by program React, so if you
are familiar with the GWB already, there is little to learn. The Configuration Commands
appendix to this User’s Guide provides a complete reference.

A client can pass several commands with a single call if it separates the commands
with semicolons. The statements

ChemPlugin cp;
cp.Config("Na+ = 2 mmol/kg; Cl- = 2 mmol/kg; pH = 6");
cp.Initialize();

configure instance “cp” to contain a dilute, slightly acidic salt solution, and then
initializes the instance by calculating the distribution of mass among the various
chemical species: NaC, Cl�, NaCl(aq), HC, OH�, HCl, and so on.

2.2.2 Linking instances
A client uses the “Link()” member function to link two ChemPlugin instances. For
example,

10



Overview

ChemPlugin cp0, cp1;
cp0.Link(cp1);

links “cp0” to “cp1”. The link is reciprocal, so the client should not then link “cp1” to
“cp0”, except to create a second link between the instances. Calling link without an
argument

cp0.Link();

creates a free outlet. The Linking Instances chapter in this User’s Guide provides
complete details and several examples of linking ChemPlugin instances.

Once a link is in place, a client uses the “FlowRate()” member function to set the
rate at which fluid traverses it:

ChemPlugin cp0, cp1;
CpiLink link0 = cp0.Link(cp1);
link0.FlowRate(10., "m3/day");

Function “FlowRate()”, as we can see, is a member of the CpiLink class, because it
applies to a link, rather than a ChemPlugin instance.

Flow is by convention positive when it moves toward the originating ChemPlugin
instance. In the example above, then, fluid moves from “cp1” toward “cp0”. The
Flow and Transport chapter gives specifics on setting flow across links.

A client can also set transmissivities that represent mass transport by diffusion
and physical mixing (i.e., hydrodynamic dispersion and turbulent mixing) using the
“Transmissivity()” member function. Function “HeatTrans()” defines in a similar fashion
heat conduction from one instance to another. Setting the mass transmissivity is
described in detail in the Diffusion and Dispersion chapter, and the Heat Transfer
chapter shows how to set the thermal transmissivity across a link.

2.2.3 Time marching
A set of five member functions provide for time marching, once an instance has been
initialized. They are:

“ReportTimeStep()” returns the optimum time step length;

“AdvanceTimeStep()” moves forward the time level, adds or removes simple
reactants, and adjusts sliding buffers;

“AdvanceTransport()” computes the effects of mass transport by advection,
diffusion, and mixing;

“AdvanceHeatTransport()” calculates the movement of heat by advection and
conduction; and

“AdvanceChemical()” evaluates the equations describing chemical reaction.

11



ChemPlugin User’s Guide

These functions, except the first, return a non-zero value when they encounter the
end of a simulation, or fail for any reason.

A loop for marching a single ChemPlugin instance forward in time might be coded:

while (true) {
double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceTransport()) break;
if (cp.AdvanceHeatTransport()) break;
if (cp.AdvanceChemical()) break;

}

The actual form of the loop differs, of course, depending on the application. Where
heat transfer is not considered, the call to “AdvanceHeatTransport()” would be omitted.
In a program that spawned multiple ChemPlugin instances, the client would loop over
the instances for each of the calls. And in a flow model that already contains a time
marching loop, the member function calls would be inserted within the existing loop.

2.2.4 Console messages
Console output contains routine messages tracing the actions of an instance, as well
as any warning and error messages generated. Unless enabled at instantiation, as
described above, a ChemPlugin instance produces no console output until directed
to do so with a call to the “Console()” member function.

“Console()” takes the target for output as its argument. The call

cp.Console("stdout");

directs console messages to the standard output, whereas

cp.Console("MyMessages.txt");

sends them to a text file for later inspection. A call with “NULL” as an argument, or
no argument at all

cp.Console();

disables console output. For more information, please reference the Member Functions
appendix to this guide.

2.2.5 Retrieving results
A client program retrieves individual pieces of information from a ChemPlugin instance
with the “Report1()” member function, and arrays of data with “Report()”. To query
instance “cp” for its pH, alkalinity, and HC ion concentation, for example, a client could
call:

12



Overview

double pH = cp.Report1("pH");
double alk = cp.Report1("alkalinity", "meq_acid/kg");
double conc = cp.Report1("concentration H+", "mmol/kg");

The statements

double* conc = new double[naqueous];
cp.Report(conc, "concentration aqueous", "mmol/kg");

retrieve a vector of the concentrations of the various aqueous species considered by
“cp”, and store it in “conc”.

To retrieve an individual integer or character string, a client uses the “Report1i()”
or “Report1c()” member functions, rather than “Report1()”. The Retrieving Results
chapter in this User’s Guide provides more information about the “Report()” family of
functions.

2.2.6 Output streams
A ChemPlugin instance can write out its calculation results in two ways. Print-format
output consists of calculation results formatted to be readable by humans. The output
is produced in blocks periodically as a simulation marches forward in time. Calling
the “PrintOutput()” member function triggers an instance to write a block of output.

Plot-format output is a data stream designed to be read by the Gtplot application
distributed with The Geochemist’s Workbench. Plot datasets consist of a header, one
or more blocks describing the chemical system at given points in a simulation, and a
trailer. A client can create plot datasets by calling the “PlotHeader()”, “PlotBlock()”,
and “PlotTrailer()” member functions.

The Direct Output chapter in this User’s Guide describes how to generate print-format
and plot-format output datasets.

2.3 Example program
The use of ChemPlugin is perhaps best demonstrated by writing a simple client
program that spawns a single ChemPlugin instance. Our program “Simple.cpp” serves
to predict how pH changes as NaOH is titrated into a NaCl solution of pH 3. The code
is:

#include <iostream>
#include "ChemPlugin.h"

int main(int argc, char** argv)
{

// Create and configure a ChemPlugin instance.
ChemPlugin cp;
cp.Config("Na+ = 1 mmol/kg; Cl- = 1 mmol/kg; pH = 3");
cp.Config("react 2 mmol NaOH; delxi = 0.1");

13



ChemPlugin User’s Guide

// Calculate initial conditions.
cp.Initialize();
std::cout << "pH = " << cp.Report1("pH") << std::endl;

// March forward in time.
while (true) {

double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceChemical()) break;
std::cout << "pH = " << cp.Report1("pH") << std::endl;

}

// Any keystroke closes the console.
std::cin.get();
return 0;

}

At the beginning of the program we’ve included the header file “ChemPlugin.h”, which
is installed with the ChemPlugin software. This file allows the compiler to recognize,
among other things, ChemPlugin’s member functions.

The first three lines of the program create and configure a ChemPlugin instance
named “cp”. A call to “Config()” sets the initial conditions by stacking three configuration
commands, separated by semicolons. A second call sets up the NaOH titration, to be
accomplished in ten steps, since delxi is 0.1. The next two lines use member function
“Initialize()” to trigger “cp” to calculate the initial conditions, and function “Report1()”
to retrieve from “cp” the initial pH, which the program reports to the console window.

Finally, the program enters a time marching loop, cycling over member functions
“ReportTimeStep()”, “AdvanceTimeStep()”, and “AdvanceChemical()”. At each pass
through the loop, the program again uses “Report1()” to find and report the current
pH. When “AdvanceTimeStep()” finds the time marching loop is complete, at the point
when the NaOH titrant is exhausted, it returns a non-zero value, breaking the loop. If
“AdvanceChemical()” were to be unable to complete its calculations for some reason,
it would similarly return true and break the time marching.

Running client program “Simple.cpp” writes the output

pH = 3
pH = 3.092
pH = 3.20886
pH = 3.36925
pH = 3.6263
pH = 4.34164
pH = 10.1464
pH = 10.5096
pH = 10.7039

14



Overview

pH = 10.8373
pH = 10.9388

to the console window.
The source code to “Simple.cpp”, as well as other client programs developed in

this User’s Guide, can be downloaded from the ChemPlugin.GWB.com website. The
procedure for compiling and linking a client program into an executable application is
described in the ChemPlugin Setup appendix.

2.4 Using this Guide
This User’s Guide consists of a series of chapters, each of which describes an aspect
of using the ChemPlugin self-linking software object. As the chapters unfold, we
develop progressively more detailed and interesting client programs, each of which
serves as an example of how to use ChemPlugin objects in a certain manner. The
final example is a full-featured polythermal reactive transport code. We suggest you
progress from client to client, running and experimenting with each, before beginning
your own project.

15



16



Titration Simulator

As a first example of using ChemPlugin, we set out to write a client program that
traces pH titrations. Our client program works by spawning and configuring a single
ChemPlugin instance. The client then enters a time marching loop that carries out
the titration.

3.1 Program structure
Our client program is laid out as a console program. The general structure of the
program file is as follows:

#include <iostream>
#include <iomanip>
#include "ChemPlugin.h"

int main(int argc, char** argv) {
... client program goes here ...

}

Thefirst threelines importC++systemheaderfiles,aswellastheheader“ChemPlugin.h”,
which is installed with the ChemPlugin software. It’s a good idea to point your compiler
to the copy of “ChemPlugin.h” in the installation directory, rather than a local copy of
the file, to make sure it pulls in the latest installed version. The client program itself
follows the header lines.

3.2 Client program
The client program has the form:

int main(int argc, char** argv) {
std::cout << "ChemPlugin example -- pH titration" << std::endl << std::endl;
std::cout << std::fixed << std::setprecision(2);

// Create a ChemPlugin instance.
ChemPlugin cp("stdout");

17



ChemPlugin User’s Guide

// Configure the instance.
... configuration step goes here ...

// Initialize the instance.
... initialization step goes here ...

// Time marching loop.
... time marching loop goes here ...

// Any keystroke closes the console.
std::cin.get();
return 0;

}

After identifying itself and setting a format for floating point output, the program creates
an instance “cp” of type “ChemPlugin”—“cp” is the ChemPlugin instance embedded
in the client. As it instantiates “cp”, the program instructs the instance to direct its
console messages to “stdout”, the standard output stream. Console messages consist
of information an instance writes as it progresses through a calculation, as well as
any error messages it may generate.

The client then configures the instance, initializes it, and enters a time marching loop
that traces the titration. These three steps are described in the following subsections.
When the time marching loop completes, the client waits for a keystroke from the
user and closes the console. The ChemPlugin instance is an automatic variable, so
its memory is freed when function “main()” goes out of scope.

3.2.1 Configuration step
To configure “cp”, the client program uses member function “Config()” to send the
instance a series of commands that define the initial condition, as well as the titration
to be undertaken.

// Configure the instance.
cp.Config("Ca++ = 1 mmol/kg; Na+ = 1 mmol/kg");
cp.Config("Cl- = 3 mmol/kg; HCO3- = 2 mmol/kg; pH = 4");
cp.Config("react 3 mmol/kg NaOH; delxi = 0.1");

The first two lines set a Ca2C-NaC-Cl�-HCO�3 solution of pH 4. The third line specifies
that 3 mmol/kg of NaOH are to be titrated into the fluid, which by default has a solvent
mass of 1 kg.

The third line further specifies a reaction step �� of 0.1. Reaction progress � varies
in a simulation from zero at the outset to a final value of one. �� is set to 0.1, so the
titration will proceed in 10 steps.

Note that several commands can be passed in a single “Config()” call, if they
are separated by semicolons. The Configuration Commands appendix of this User’s
Guide describes ChemPlugin’s command set.

18



Titration Simulator

3.2.2 Initialization step
Once the instance is configured, a call to member function “Initialize()” triggers it to
compute the initial state corresponding to its configuration, and to prepare for time
marching.

// Initialize the instance.
cp.Initialize();
std::cout << " Xi = " << cp.Report1("Xi");
std::cout << " pH = " << cp.Report1("pH") << std::endl;

The client then uses member function “Report1()” to query the ChemPlugin instance
for the reaction progress variable � and the initial pH, the values of which it writes to
the console.

3.2.3 Time marching loop
The time marching loop by which the client program traces the titration consists of
only a few lines of code:

// Time marching loop.
while (true) {

double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceChemical()) break;
std::cout << " Xi = " << cp.Report1("Xi");
std::cout << " pH = " << cp.Report1("pH") << std::endl;

}

The loop calls three member functions, and executes two lines in which the client
fetches and reports � and pH, in a cycle.

First, a call to “ReportTimeStep()” triggers the instance to calculate an appropriate
time step size. The function returns a value for �t in units of seconds, and the program
stores the value in variable “deltat”. We haven’t set a time span for the simulation,
so reflecting the value set for “delxi” at configuration time, “deltat” is one-tenth of an
arbitrary end time of 1 day carried by ChemPlugin.

Next, a call to “AdvanceTimeStep()” passes “deltat” to the instance. Upon executing
the function, the instance moves forward in reaction progress by “deltat” seconds.
The function returns a value of zero, unless the program has reached the end of the
simulation. In that case, a non-zero return breaks the loop and time marching ceases.

Finally, executing member function “AdvanceChemical()” causes the instance to
evaluate the chemical equations at the new point in time, accounting for equilibrium
as well as kinetic reactions. The function returns zero, unless an error occurs. A
non-zero return marks an error, again breaking the loop.

Once the time step is complete, the client writes out � and pH, and returns to take
another step.

19



ChemPlugin User’s Guide

3.3 Running the example program
Upon execution, the client program produces the output shown below:

ChemPlugin example -- pH titration

Solving for initial system.

Loaded: 17 aqueous species,
16 minerals,
2 gases,
0 surface species,
6 elements,
3 oxides.

Xi = 0.00 pH = 4.00
Xi = 0.10 pH = 5.39
Xi = 0.20 pH = 5.86
Xi = 0.30 pH = 6.15
Xi = 0.40 pH = 6.42
Xi = 0.50 pH = 6.70
Xi = 0.60 pH = 7.08
2 supersaturated phases, most = Calcite
Swapping Calcite in for CO2(aq)
Xi = 0.70 pH = 7.68
Xi = 0.80 pH = 7.87
Xi = 0.90 pH = 8.16
Xi = 1.00 pH = 8.72

Successful completion of reaction path.

The output consists of console messages from the instance interspersed with lines
written by the client; the latter output starts with “Xi = ...”. Note especially the message
reporting that CaCO3 precipitates as the solution trends alkaline.

We might prefer to not intersperse console and client messages in the output
stream. In that case, we can call member function “Console()” without an argument

// Time marching loop.
cp.Console();
while (true) {

double deltat = cp.ReportTimeStep();
... and so on ...

}

at the head of the time marching loop. A call of this form disables console output from
the instance.

20



Titration Simulator

3.4 Assembled C++ code
The source code for the client program, as assembled from above, is shown below:

#include <iostream>
#include <iomanip>
#include "ChemPlugin.h"

int main(int argc, char** argv) {
std::cout << "ChemPlugin example -- pH titration" << std::endl << std::endl;
std::cout << std::fixed << std::setprecision(2);

// Create a ChemPlugin instance.
ChemPlugin cp("stdout");

// Configure the instance.
cp.Config("Ca++ = 1 mmol/kg; Na+ = 1 mmol/kg");
cp.Config("Cl- = 3 mmol/kg; HCO3- = 2 mmol/kg; pH = 4");
cp.Config("react 3 mmol/kg NaOH; delxi = 0.1");

// Initialize the instance.
cp.Initialize();
std::cout << " Xi = " << cp.Report1("Xi");
std::cout << " pH = " << cp.Report1("pH") << std::endl;

// Time marching loop.
while (true) {

double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceChemical()) break;
std::cout << " Xi = " << cp.Report1("Xi");
std::cout << " pH = " << cp.Report1("pH") << std::endl;

}

// Any keystroke closes the console.
std::cin.get();
return 0;

}

The source code may be downloaded as file “Titration1.cpp”, available from the
ChemPlugin.GWB.com website.

Note: This code is also available in FORTRAN and Python from ChemPlugin.
GWB.com.

21



ChemPlugin User’s Guide

3.5 Generalization
In closing, we note the code above can be adapted to trace reaction paths of arbitrary
nature, simply by altering the configuration step. In the React Emulator chapter we
do just that, setting up a reactor model that employs a ChemPlugin instance to trace
reaction models in the general sense.

22



Retrieving Results

The client program we developed in the previous chapter spawned a ChemPlugin
instance and used it to trace a titration. At each step in the time marching, the client
used the “Report1()” member function to query the instance for the current point in
the reaction progress, and again to retrieve the pH.

In this chapter, we consider in more detail how a client can retrieve calculation
results from a ChemPlugin instance, by calling the “Report()” member function, or its
short forms “Report1()”, “Report1i()”, and “Report1c()”, which return a single floating
value, integer number, or character string, respectively. The client might use the results
in its own calculations, or just write them out for the user.

It is also possible to direct an instance to write calculation results directly to files,
for later viewing or plotting. The Direct Output chapter of this User’s Guide describes
how ChemPlugin instances can generate output in this manner.

4.1 Report() family of member functions
A client program uses the “Report()” member function, or its cousins “Report1()”,
“Report1i()”, and “Report1c()”, to gather information about the current state of a
ChemPlugin instance. A call to “Report()” has the form:

ChemPlugin cp;
void *target;
const char* keywords, unit;
int n = cp.Report(target, keywords, unit);

The function locates the information corresponding to “keywords”, casts it in terms
of “unit”, if this field is supplied, and copies the data as a vector to memory location
“target”. The function returns the number of pieces of information that have been
written to “target”.

The related function “Report1()” returns a single double value; “Report1()” is a short
form of the “Report()” function

double s = cp.Report1(keywords, unit);

23



ChemPlugin User’s Guide

in which the result is returned directly, rather than copied to a target in memory. The
statement above is functionally equivalent to:

double s;
cp.Report(&s, keywords, unit);

Functions “Report1i()” and “Report1c()” work similarly,

int i = cp.Report1i(keywords);
char* c = cp.Report1c(keywords);

except they return an integer or pointer to a character string, respectively.
For the “Report()” family of functions, the options for specifying “keywords” are listed

in the Report Function chapter of this User’s Guide. The “unit” keyword is optional,
and the choices available are shown in the Units Recognized appendix to this Guide.

“Report()” may not be able to fulfill every request—perhaps the client has specified
an impossible unit conversion—in which case the function will write to “target” the
marker value “ANULL”, which is defined in “ChemPlugin.h”.

4.1.1 Scalar values
To retrieve an individual value of type double, such as pH or a given species’
concentration, a client can use “Report1()”, the short form of the “Report()” function.
A client program might need to retrieve from a ChemPlugin instance “cp” the current
pH, the alkalinity in meq of acid per kg solution, and the concentration of the HC ion
in mmol/kg, and to write out the values. In this case, you can code

double pH = cp.Report1("pH");
double alk = cp.Report1("alkalinity", "meq_acid/kg");
double chplus = cp.Report1("concentration H+", "mmol/kg");

cout << "pH = " << pH
<< ", alkalinity = " << alk << " meq/kg acid"
<< ", conc. H+ = " << chplus << " mmol/kg" << endl;

within the client program. Alternatively, of course, a client can write values directly

cout << "pH = " << cp.Report1("pH") << endl;

without storing them.
Member functions “Report1i()” and “Report1c()” work the same way, but query an

instance for integer values and character string pointers. The statements

int nsp = cp.Report1i("naqueous");
char* spec = cp.Report1c("species 4");

24



Retrieving Results

store the number of aqueous species considered in “nsp”, and the name of the fifth
aqueous species in “spec” (vector positions are numbered by offset, so the fifth species
is indexed 4).

4.1.2 Vector quantities
To retrieve vectors of data, such as the names and concentrations of the aqueous
species considered by a ChemPlugin instance, a client allocates target memory to
hold the results and pass the target’s address to “Report()”.

Suppose a client program requires the names and free concentrations in
mmol kg�1 of the various aqueous species considered. In this case, you could
include:

// Find number of aqueous species.
int nsp = cp.Report1i("naqueous");

// Get species names.
char **spec = new char*[nsp];
cp.Report(spec, "species");

// Retrieve species concentrations.
double *conc = new double[nsp];
cp.Report(conc, "concentration aqueous", "mmol/kg");

// Output results.
for (int i; i<nsp; i++)

cout << spec[i] << " = " << conc[i] << " mmol/kg" << endl;

// Free up memory.
delete[ ] spec;
delete[ ] conc;

within the client.
Rather than gathering a complete vector, a client can retrieve vector elements by

index. The following code

// Find number of aqueous species.
int nsp = cp.Report1i("naqueous");

for (int i; i<nsp; i++) {
std::string spec_keywords = "species " + std::to_string(i);
std::string conc_keywords = "concentration aqueous " + std::to_string(i);

// Find and output species names and concentrations.
char *spec = cp.Report1c(spec_keywords);
double conc = cp.Report1(conc_keywords, "mmol/kg");

25



ChemPlugin User’s Guide

cout << spec << " = " << conc << " mmol/kg" << endl;
}

serves the same purpose as the previous example.
Finally, a client can retrieve elements of a vector by name, as shown in this example:

// Get names of aqueous species.
int nsp = cp.Report1i("naqueous");
char **spec = new char*[nsp];
cp.Report(spec, "species");

for (int i; i<nsp; i++) {
// Output concentration of each species.
std::string conc_keywords = "concentration aqueous " + std::string(spec[i]);
double conc = cp.Report1(conc_keywords, "mmol/kg");
cout << spec[i] << " = " << conc << " mmol/kg" << endl;

}

Again, the results are the same as the previous examples in this section.

4.1.3 NULL target
If the client passes NULL for “target”, the “Report()” function determines the number of
pieces of information to be returned, without copying information to the client program.
This feature can help avoid memory overwrites.

In the example above, we might replace the sequence

int nsp = cp.Report1i("naqueous");

with

int nsp = cp.Report(NULL, "concentration aqueous", "mmol/kg");

Now, we can be more directly certain that

double *conc = new double[nsp];
cp.Report(conc, "concentration aqueous", "mmol/kg");

will not overwrite memory, since we have let “Report()” determine the number of values
a specific call to the function will copy to “conc”.

4.2 An example
In the previous chapter, we developed a program for reporting how pH varies over
the course of a titration. Suppose as an alternative example we would like the client

26



Retrieving Results

to report not pH, but the concentration of each aqueous species present at levels of
10 �mol/kg or greater.

To this end, we replace the time marching loop in the original client program with
the code:

// Initialize the instance.
cp.Initialize();

int nsp = cp.Report(NULL, "species");
char **spec = new char*[nsp];
double *conc = new double[nsp];
cp.Report(spec, "species");

// Time marching loop.
while (true) {

double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceChemical()) break;
cp.Report(conc, "concentration aqueous", "umol/kg");
for (int i=0; i<nsp; i++)

if (conc[i] >= 10.0)
std::cout << spec[i] << " = " << conc[i] << " umol/kg" << std::endl;

std::cout << std::endl;
}

delete[ ] spec;
delete[ ] conc;

The strategy is to gather pointers to the species’ names and store the vector in “spec”,
and to write the species’ concentrations to vector “conc”.

At the onset of time marching, the client program determines the number of aqueous
species “nsp” and, knowing that, allocates vectors “spec” and “conc”. It then calls
“Report()” to fill “spec” with pointers to the species’ names. Note the species’ names
are available only after “Initialize()” has been called.

Upon completing each time step, the client queries the ChemPlugin instance for the
species’ concentrations. For each species at the requisite level, the program writes
out its name and concentration. Once the time marching is complete, the client frees
the memory allocated to “spec” and “conc”.

Console output from running the revised code is:

ChemPlugin example -- pH titration

Solving for initial system.

Loaded: 17 aqueous species,
16 minerals,
2 gases,

27



ChemPlugin User’s Guide

0 surface species,
6 elements,
3 oxides.

CO2(aq) = 1792.81 umol/kg
Ca++ = 985.82 umol/kg
CaCl+ = 11.61 umol/kg
Cl- = 3085.40 umol/kg
HCO3- = 204.29 umol/kg
Na+ = 1299.59 umol/kg

CO2(aq) = 1495.66 umol/kg
Ca++ = 982.33 umol/kg
CaCl+ = 11.48 umol/kg
Cl- = 3085.48 umol/kg
HCO3- = 497.17 umol/kg
Na+ = 1598.93 umol/kg

... and so on ...

As an alternative, we can code the time marching loop to retrieve species’ names
and concentrations individually, rather than in vector form:

// Initialize the instance.
cp.Initialize();

int nsp = cp.Report1i("naqueous");

// Time marching loop.
while (true) {

double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceChemical()) break;

for (int i=0; i<nsp; i++) {
std::string spec_keywords = "species " + std::to_string(i);
std::string conc_keywords = "concentration aqueous " + std::to_string(i);

char *spec = cp.Report1c(spec_keywords);
double conc = cp.Report1(conc_keywords, "umol/kg");
if (conc > 10.0)

std::cout << spec << " = " << conc << " umol/kg" << std::endl;
}
std::cout << std::endl;

}

28



Retrieving Results

The scalar coding gives the same results as the vector coding, but requires additional
calls to “Report1()” and “Report1c()”, and hence might be expected to execute less
quickly.

4.3 Source code
The complete source code for the client programs developed in this chapter are
contained in files “Titration2.cpp” and “Titration3.cpp”, available for download from the
ChemPlugin.GWB.com website.

Note: This code is also available in FORTRAN and Python from ChemPlugin.
GWB.com.

29



30



Direct Output

A client program, as we showed in the previous chapter, can retrieve calculation
results from a ChemPlugin instance and write out those results for later viewing or
plotting. This scenario is perhaps the most common mode of rendering the results of
ChemPlugin simulations.

The client program can also prompt a ChemPlugin instance to write out results
directly. ChemPlugin can do this in two ways:

A print-format dataset. Such datasets are composed of data blocks within a simple
text file. Each block represents the state of a ChemPlugin instance at a specific
point in a simulation, set out in terms of human-readable tables.

A plot-format dataset. Plot-format datasets are meant to be read by the Gtplot
program supplied with the GWB. Plot datasets provide for a simple method for
graphically rendering the results of a ChemPlugin simulation for an individual
ChemPlugin instance.

Direct output, then, provides a method for communicating results to the software user
with a minimum of effort on the part of the client.

5.1 Scheduling output
There are two ways to set a ChemPlugin instance to write out results directly:

Self-scheduled output. In this case, the client program uses the “Config()” member
function to turn on print output, plot output, or both. Optionally, the client may
call “Config()” to set variables controlling the frequency of output.

On-demand output. Here, the client program calls a member function whenever
it wants the instance to write print- or plot-format output.

The two options are described in detail in the following sections.

31



ChemPlugin User’s Guide

5.2 Self-scheduled output
A client can allow a ChemPlugin instance to schedule print-format and plot-format
output on its own, just as the GWB program React does.

5.2.1 Print output
A client turns on self-scheduled output to a print-format dataset with the “print”
configuration command. The call

cp.Config("print = on");

causes print output to be scheduled.
A ChemPlugin instance, when using self scheduling, writes output blocks after

initializing the system, at set intervals in reaction progress, as well as whenever
the phase assemblage in the chemical system changes. The “dxprint” configuration
command controls the interval between output points. For example, the call

cp.Config("dxprint = 0.1");

sets the instance to write an output block at the onset of the simulation, ten times
over the course of the simulation, at � = 0, 0.1, 0.2, and so on, and whenever the
phase assemblage changes.

5.2.2 Plot output
A client turns on self-scheduled output to the plot dataset with the “plot” command:

cp.Config("plot = on");

The “dxplot” configuration command

cp.Config("dxplot = 0.001");

sets the minimum spacing in reaction progress between plot output points, in this
case to one-thousandth of the reaction interval. The command

cp.Config("dxplot = 0");

specifies that each step in the reaction simulation be represented in the plot dataset.

5.3 On-demand output
A client program can trigger output to a print-format dataset using the “PrintOutput()”
memberfunction,andtoaplot-formatdatasetwithfunctions“PlotHeader()”, “PlotBlock()”,
and “PlotTrailer()”.

32



Direct Output

5.3.1 Print output
A call to member function “PrintOutput()” triggers a ChemPlugin instance to write a
block of data representing the instance’s current state to a print-format dataset. When
passed a file name

cp.PrintOutput("myPrint.txt");

the instance appends a data block to that file, if it is open for output. If not, the instance
opens and writes to a new file of that name.

Calling the function without an argument

cp.PrintOutput();

causes the block to be appended to whatever dataset is currently open for print output. If
none is open, the instance opens and writes to a new dataset “ChemPlugin_output.txt”.

In either case, the instance will append any output suffix that may have been set
to the file name. For example, the statements

cp.Config("suffix _mysuffix");
cp.PrintOutput("myPrint.txt");

directs output to a dataset named “myPrint_mysuffix.txt”.
As an example, if we were to add two calls to “PrintOutput()” to the time marching

loop in our reactor

// Initialize the instance.
cp.Initialize();
cp.PrintOutput("myPrint.txt");

// Time marching loop.
while (true) {

double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceChemical()) break;
cp.PrintOutput();

}

the program would write into “myPrint.txt” a block representing the initial condition,
followed by blocks representing the result after completing each time step.

In a variation on the coding

// Initialize the instance.
cp.Initialize();
cp.PrintOutput("Initial.txt");

// Time marching loop.

33



ChemPlugin User’s Guide

while (true) {
double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceChemical()) break;
cp.PrintOutput("Path.txt");

}

the initial condition would be written to “Initial.txt” and results of the time stepping to
“Path.txt”.

An optional second argument to “PrintOutput()” causes the instance to post an
identifying label at the head of the data block being written; a third argument rewinds
the output dataset before writing to it, if the argument evaluates to true. In the time
marching loop

// Initialize the instance.
cp.Initialize();

// Time marching loop.
while (true) {

double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceChemical()) break;
cp.PrintOutput("myPrint.txt", "Latest result", true);
std::cin.get();

}

the program pauses after each step in the time marching so the user can inspect the
results for that step only in file “myPrint.txt”.

5.3.2 Plot output
A plot-format dataset consists of three parts: a header, a series of data blocks, and
a trailer. All three are needed if Gtplot is to render the data graphically. Member
function “PlotHeader()” writes the dataset header, “PlotBlock()” adds a data block, and
“PlotTrailer()” writes the trailer.

Function “PlotHeader()” works like “PrintOutput()”. If the client specifies a file name,
the function writes a header to the named file; otherwise it writes to whatever file is
open for plot-format output, or to “ChemPlugin_plot.gtp” if none is open. The function
honors any suffix that has been set, so

myCpi.Config("suffix _mysuffix");
myCpi.PlotHeader("myPlot.gtp");

writes a plot header to dataset “myPlot_mysuffix.gtp”.
To create a plot dataset, a client calls “PlotHeader()” once and “PlotBlock()” each

time it wants to add the results for a time step. When function “ReportTimeStep()”

34



Direct Output

detects the end of a simulation, it automatically appends the dataset trailer. For this
reason, it is commonly not necessary to call “PlotTrailer()”, although doing so simply
overwrites any existing trailer and hence is harmless.

As an example, the time marching loop

// Initialize the instance.
cp.Initialize();
cp.PlotHeader("myPlot.gtp");
cp.PlotBlock();

// Time marching loop.
while (true) {

double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceChemical()) break;
cp.PlotBlock();

}
cp.PlotTrailer(); // Not necessary.

creates a valid plot-format dataset “myPlot.gtp” that contains the initial condition and
the instance’s state after each step in the time marching loop.

Significantly, a client can extend a plot dataset, even after the plot trailer has been
written. To do so, simply call “PlotBlock()” again as needed, then append the trailer
once again, if necessary. In the time marching loop

// Initialize the instance.
cp.Initialize();
cp.PlotHeader("myPlot.gtp");
cp.PlotBlock();

// Time marching loop.
while (true) {

double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceChemical()) break;
cp.PlotBlock();
cp.PlotTrailer();
std::cout << "Pausing at Xi = " << cp.Report1("Xi") << std::endl;
std::cin.get();

}
cp.PlotTrailer(); // Not necessary.

the client program after completing each time step adds a data block and trailer to
the plot dataset. The user can open the plot dataset with Gtplot to inspect results to
that point in the calculation, before undertaking a new time step.

35



ChemPlugin User’s Guide

5.4 Contents of print-format output
A client controls the content and arrangment of information in a print-format dataset
with the “print” configuration command. For example, the calls

myCpi.Config("print species = long");
myCpi.Config("print = alphabetic");

instruct the instance to write out information about all aqueous species, regardless
of concentration, and to arrange the output alphabetically, rather than in decreasing
numeric order. The Configuration Commands appendix of this Guide describes the
“print” command in detail.

5.5 Source code
Source code for examples demonstrating direct output by a ChemPlugin instance
are available as files “Titration4.cpp”, “Titration5.cpp”, and “Titration6.cpp” from the
ChemPlugin.GWB.com website.

Note: This code is also available in FORTRAN and Python from ChemPlugin.
GWB.com.

36



Extending Runs

Once a time marching loop is complete, a client can extend the simulation to continue
marching through time. The client can, furthermore, reconfigure the reaction parameters
between time marching loops so that each loop traces a different reaction path. You
can use ChemPlugin objects, then, to daisy-chain time marching loops into complex
simulations.

6.1 Extending a titration
As an example of extending a simulation, we modify the client program we developed
in the Titration Simulator chapter to simulate a second titration into result of the first
titration.

To do so, we replace the initializiation step and time marching loop in file Titration1.cpp
with the code fragment:

// Initialize the instance.
cp.Initialize(1.0, "hour");
std::cout << " Xi = " << cp.Report1("Xi");
std::cout << " pH = " << cp.Report1("pH") << std::endl;

// First time marching loop.
while (true) {

double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceChemical()) break;
std::cout << " Xi = " << cp.Report1("Xi");
std::cout << " pH = " << cp.Report1("pH") << std::endl;

}

// Reconfigure and extend the run.
std::cout << std::endl << " Extending run to Xi = 2" << std::endl;
cp.Config("remove reactant NaOH");
cp.Config("react 3 mmol/kg HCl");
cp.ExtendRun(1.0, "hour");

// Second time marching loop.

37



ChemPlugin User’s Guide

while (true) {
double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceChemical()) break;
std::cout << " Xi = " << cp.Report1("Xi");
std::cout << " pH = " << cp.Report1("pH") << std::endl;

}

The client now contains two time marching loops, one following the other.
Where the client calls member function “Initialize()” to initialize instance “cp”, it uses

the function’s optional arguments to set a time span of 1 hour; this end time applies to
the first loop. After that loop completes at � D 1, the client replaces the NaOH titrant
with HCl and calls member function “ExtendRun()” to add an hour to the simulation.
The client then enters a second time marching loop, coded identically to the first,
stepping from � D 1 to � D 2.

Output from simulating the dual titration looks like:

ChemPlugin example -- extending a pH titration

Solving for initial system.

Loaded: 17 aqueous species,
16 minerals,
2 gases,
0 surface species,
6 elements,
3 oxides.

Xi = 0.00 pH = 4.00
Xi = 0.10 pH = 5.39
Xi = 0.20 pH = 5.86
Xi = 0.30 pH = 6.15
Xi = 0.40 pH = 6.42
Xi = 0.50 pH = 6.70
Xi = 0.60 pH = 7.08
2 supersaturated phases, most = Calcite
Swapping Calcite in for CO2(aq)
Xi = 0.70 pH = 7.68
Xi = 0.80 pH = 7.87
Xi = 0.90 pH = 8.16
Xi = 1.00 pH = 8.72

Successful completion of reaction path.

Extending run to Xi = 2

38



Extending Runs

Xi = 1.10 pH = 8.17
Xi = 1.20 pH = 7.88
Xi = 1.30 pH = 7.69
Xi = 1.33 pH = 7.64
Xi = 1.33 pH = 7.64
Calcite is undersaturated
Swapping CO2(aq) in for Calcite
Xi = 1.33 pH = 7.64
Xi = 1.33 pH = 7.64
... and so on ...
Xi = 1.97 pH = 4.51
Xi = 2.00 pH = 4.01

Successful completion of reaction path.

Note the instance takes small steps near the point at which CaCO3 dissolves away
completely, in order to predict the point at which the phase disappears precisely.

6.2 C++ source code
The full C++ source code for the client program above is available for download from
the ChemPlugin.GWB.com website as file “Extend1.cpp”.

Note: This code is also available in FORTRAN and Python from ChemPlugin.
GWB.com.

39



40



React Emulator

In this chapter, we set out to generalize the titration model “Titration.cpp” we developed
in previous chapters. To this end, we embed an instance of the ChemPlugin object
within a client program in order to create a general-purpose reaction simulator.

Our program—we call it mReact—uses ChemPlugin to emulate the React application
in The Geochemist’s Workbench. ChemPlugin and React are configured in terms of
similar sets of commands, as described in the Configuration Commands appendix.

Program mReact works by configuring a ChemPlugin instance with commands
taken from an input file. Whenever mReact encounters the command “go” in the input
stream, it triggers the instance to trace a reaction model, as prescribed by its current
configuration. When finished, the program returns to processing commands.

We examine here the program piece by piece, but you may wish to reference the
complete C++ code for mReact, given at the end of this chapter, as you work.

7.1 Program structure
The mReact program is laid out as a console program in file “mReact.cpp”. The
general structure is as follows:

#include <iostream>
#include <fstream>
#include <string>
#include "ChemPlugin.h"

void open_input(std::ifstream& input, int argc, char** argv) {
... function goes here ...

}

int main(int argc, char** argv) {
... main program goes here ...

}

The first four lines import system headers and the ChemPlugin header “ChemPlugin.h”,
which is installed with the ChemPlugin software.

41



ChemPlugin User’s Guide

The program then sets out function “open_input”, which identifies the input file and
opens a data stream from it. We won’t discuss this function, since it is not related to
ChemPlugin, but its coding is shown at the end of the chapter. The remainder of the
file sets out the coding for the main program.

7.2 Main program
The main mReact program has the form:

int main(int argc, char** argv) {
std::cout << "mReact -- Use ChemPlugin to emulate React"

<< std::endl << std::endl;

// Create a ChemPlugin instance and capture output messages.
ChemPlugin cp("stdout");

// Use React’s default settings; write print- and plot-format output.
cp.Config("delxi = 0.01; step_increase = 1.5; pluses = banner");
cp.Config("print = on; plot = on");

// Process input line-by-line while watching for "go" statements.
std::ifstream input;
open_input(input, argc, argv);

... input loop goes here ...

// Any keystroke closes the console.
std::cin.get();
return 0;

}

After identifying itself, the program creates a ChemPlugin instance “cp”, which will
direct its console messages to the standard output stream.

mReact next uses member function “Config()” to send a series of commands to
the ChemPlugin instance. The default settings for a small number of variables in
ChemPlugin differ from those in React, as described in the Configuration Commands
appendix. Here we set those values to the defaults carried by React.

A second call to “Config()” turns on generation of print-format and plot-format output
files. As it traces a simulation, mReact will now write the calculation results to files
“ChemPlugin_output.txt” and “ChemPlugin_plot.gtp”.

Next, function “open_input()” opens the input stream and mReact enters into a loop
in which it reads and processes the input file, line by line. The input loop is described
in the next subsection. When the loop terminates, mReact waits for a keystroke from
the user and closes the console.

7.2.1 Input loop
The input loop proceeds by fetching lines from the input file until reaching the end:

42



React Emulator

while (!input.eof()) {
std::string line;
std::getline(input, line);
if (line != "go" ) {

cp.Config(line);
}
else {

... time marching loop goes here ...
}

}

Each line of input is passed to the ChemPlugin instance using member function
“Config()”, unless the line contains the command “go”. In that case, mReact enters
the time marching loop to trace the simulation.

7.2.2 Time marching loop
The time marching loop by which mReact carries out the reactor simulation consists
of only a few lines of code:

cp.Initialize();
while (true) {

double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceHeatTransport()) break;
if (cp.AdvanceChemical()) break;

}

The call to member function “Initialize()” triggers the ChemPlugin instance to calculate
its initial state, as defined by the input commands processed to this point, and prepare
to enter the time marching loop.

The time marching loop consists of four member function calls executed in a cycle.
A call to “ReportTime()” triggers the instance to calculate an appropriate time step
size. The function returns a value for �t in units of seconds, and the program stores
the value in variable “deltat”.

A call to “AdvanceTimeStep()” passes the time step size to the instance. Upon
executing the function, the instance moves forward in reaction progress. The function
returns a value of zero, unless mReact has reached the end of the simulation. In that
case, a non-zero return breaks the loop and time marching ceases.

Calling “AdvanceHeatTransport()” updates temperature in a polythermal path. Finally,
executing member function “AdvanceChemical()” causes the instance to evaluate the
chemical equations at the new point in time, accounting for equilibrium as well as
kinetic reactions. The function returns zero, unless an error occurs. A non-zero return
marks an error, breaking the loop.

43



ChemPlugin User’s Guide

7.3 Running the example program
To test out our program, we prepare an input file “Acidity.rea”

Ca++ = 1 mmol/kg
Na+ = 1 mmol/kg
Cl- = 3 mmol/kg
HCO3- = 2 mmol/kg
pH = 4
react 3 mmol/kg NaOH
go

that reacts NaOH into an initially acidic fluid. Executing the client program using this
file as input writes the following to the console:

mReact -- Use ChemPlugin to emulate React

Enter React input script: Acidity.rea
Reading from file Acidity.rea

Solving for initial system.

Loaded: 17 aqueous species,
16 minerals,
2 gases,
0 surface species,
6 elements,
3 oxides.

Step 0, Xi = 0 (32 iterations)
Charge balance: Cl- molality adjusted from .003 to .003098

Step 1, Xi = .01 (9 iterations)
Step 2, Xi = .02 (7 iterations)
Step 3, Xi = .03 (7 iterations)
Step 4, Xi = .04 (8 iterations)
Step 5, Xi = .05 (8 iterations)

... and so on ...

Step 95, Xi = .95 (9 iterations)
Step 96, Xi = .96 (7 iterations)
Step 97, Xi = .97 (9 iterations)
Step 98, Xi = .98 (9 iterations)
Step 99, Xi = .99 (9 iterations)
Step 100, Xi = 1 (9 iterations)

Successful completion of reaction path.

44



React Emulator

Upon completion, the calculation results are found in files “ChemPlugin_output.txt”
and “ChemPlugin_plot.gtp”.

7.4 mReact C++ code
The full source code for mReact is given in file “mReact.cpp”, available for download
from the ChemPlugin.GWB.com website.

Note: This code is also available in FORTRAN and Python from ChemPlugin.
GWB.com.

The code is also reproduced below:

#include <iostream>
#include <fstream>
#include <string>
#include "ChemPlugin.h"

void open_input(std::ifstream& input, int argc, char** argv) {
while (!input.is_open()) {

std::string filename;
if (argc < 2) {

std::cout << "Enter React input script: ";
std::cin >> filename;
std::cin.ignore();

}
else {

filename = argv[1];
}

input.open(filename);

if (!input.is_open())
std::cerr << "The input file does not exist" << std::endl;

}
}

int main(int argc, char** argv) {
std::cout << "mReact -- Use ChemPlugin to emulate React"

<< std::endl << std::endl;

// Create a ChemPlugin instance and capture output messages.
ChemPlugin cp("stdout");

// Use React’s default settings; write print- and plot-format output.
cp.Config("delxi = 0.01; step_increase = 1.5; pluses = banner");
cp.Config("print = on; plot = on");

// Process input line-by-line while watching for "go" statements.

45



ChemPlugin User’s Guide

std::ifstream input;
open_input(input, argc, argv);
while (!input.eof()) {

std::string line;
std::getline(input, line);
if (line != "go" ) {

cp.Config(line);
}
else {

cp.Initialize();
while (true) { // Time marching loop.

double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceHeatTransport()) break;
if (cp.AdvanceChemical()) break;

}
}

}

// Any keystroke closes the console.
std::cin.get();
return 0;

}

46



Linking Instances

A link is a connection between two ChemPlugin instances, across which chemical
mass and heat energy may pass. This chapter shows how a client program sets and
removes links.

Note that a client can create any number of links between two instances. It might
set a link to carry flow from one instance to another, then a second to handle the
possibility of back-flow.

You should know as well that links are reciprocal: when a client connects one
instance to another, it should not then connect the second instance to the first, except
to form a second link.

8.1 Linking instances
A client program connects two instances with member function “Link()”, which returns
a reference of type “CpiLink” to the resulting link. For example, the code

ChemPlugin cp0, cp1;
CpiLink link0 = cp0.Link(cp1);

connects “cp0” and “cp1”, storing a reference to the link in variable “link0”. Once “link0”
is created, if the client were to then execute

CpiLink link1 = cp1.Link(cp0);

the call would set a second connection between the instances, as referenced by “link1”.
Most commonly, a single connection between any two nodes is all that is required.

Once two ChemPlugin instances are linked, a client might wish to hold onto the
link’s reference. For example, the code

link0.FlowRate(2.0, "m3/day");

sets flow rate across “link0”, as discussed in the next chapter. References to links,
nonetheless, can be recovered easily. If two links to “cp0” have been set, for example,
references to the links are returned

47



ChemPlugin User’s Guide

CpiLink link0 = cp0.Link(0);
CpiLink link1 = cp0.Link(1);

by calling the “Link()” member function with an integer argument.
It is also easy to determine the number of links to an instance, by using member

function “nLinks()”. The code

int nlinks = cp0.nLinks();
int nlink1 = cp0.nLinks(cp1);

stores the total number of links to “cp0” in variable “nlinks”, and the number of links
between “cp0” and “cp1” in “nlink1”.

8.2 Free outlets
Free outlets are open links to a ChemPlugin instance. Fluid may flow across a free
outlet away from the instance, but not toward it. A free outlet, furthermore, cannot
carry diffusive transport, or conduct heat.

A client can set a free outlet with the “Outlet()” member function,

CpiLink outlet0 = cp0.Outlet();

or, equivalent, by calling “Link()”

CpiLink outlet0 = cp0.Link();

without an argument.
Member function “nOutlets()”

int noutlet0 = cp0.nOutlets();

reports the number of free outlets connected to an instance.

8.3 Removing links
A client program is free at any time to reconfigure the arrangement of ChemPlugin
instances by removing and creating links. Function “Unlink()”, which serves to remove
links, is a member of both the “ChemPlugin” and “CpiLink” classes.

Once a client has linked two “ChemPlugin” instances

ChemPlugin cp0, cp1;
CpiLink link0 = cp0.Link(cp1);

it may remove that link by its reference

48



Linking Instances

link0.Unlink();

by reference to the linked instance

cp0.Unlink(cp1);

or by index

cp0.Unlink(0);

Each case is equivalent in function, and in each case a return value of zero signals
success.

Member function “ClearLinks()”

cp0.ClearLinks();

removes all of the links to an instance; again, success is signaled by a return value
of zero.

8.4 Example programs
The examples below show how to link ChemPlugin instances in varying geometries.
The header lines in the second and third examples are not shown.

8.4.1 Linear chain
First, we consider a client program that arranges eight ChemPlugin instances in a
linear chain. The chain is connected to an inlet boundary on the left side, and a free
outlet boundary on the right.

The instances are referenced left-to-right as “cp[0]” through “cp[7]”, a boundary
instance “cp_inlet” represents the inlet condition, and the free outlet is an open link:

The client program is given:

#include <iostream>
#include "ChemPlugin.h"

int main(int argc, char** argv) {
std::cout << "Link ChemPlugin instances into a one-dimensional chain"

<< std::endl << std::endl;

49



ChemPlugin User’s Guide

// Create the ChemPlugin instances.
int nchain = 8;
ChemPlugin cp_inlet;
ChemPlugin *cp = new ChemPlugin[nchain];

// Link the instances into a chain.
cp[0].Link(cp_inlet);
for (int i=1; i<nchain; i++)

cp[i].Link(cp[i-1]);
cp[nchain-1].Outlet();

// Report the number of links to each instance.
std::cout << "Inlet is linked to " << cp_inlet.nLinks()

<< " instance" << std::endl;
for (int i=0; i<nchain; i++)

std::cout << "Instance " << i << " is linked to " << cp[i].nLinks()
<< " instances" << std::endl;

// Any keystroke closes the console.
std::cin.get();
delete[ ] cp;
return 0;

}

Running the program produces the console output

Link ChemPlugin instances into a one-dimensional chain

Inlet is linked to 1 instance
Instance 0 is linked to 2 instances
Instance 1 is linked to 2 instances
Instance 2 is linked to 2 instances
Instance 3 is linked to 2 instances
Instance 4 is linked to 2 instances
Instance 5 is linked to 2 instances
Instance 6 is linked to 2 instances
Instance 7 is linked to 2 instances

8.4.2 Grid
Second, we consider a 5�3 grid of instances, with the left, right, bottom, and top of
the grid linked to boundary instances.

50



Linking Instances

Running the client program

int main(int argc, char** argv) {
int nx = 5, ny = 3;
std::cout << "Link ChemPlugin instances into a " << nx << " by " << ny

<< " grid" << std::endl << std::endl;

// Create the ChemPlugin instances.
ChemPlugin cp_left, cp_right, cp_bottom, cp_top;
ChemPlugin *cp = new ChemPlugin[nx*ny];

// Link the instances into a tree.
for (int j=0; j<ny; j++) {

for (int i=0; i<nx; i++) {
int ij = i + j*nx;
cp[ij].Link(i == 0? cp_left : cp[ij-1]);
cp[ij].Link(j == 0? cp_bottom : cp[ij-nx]);
if (j == ny-1) cp_top.Link(cp[ij]);

}
cp_right.Link(cp[(j+1)*nx-1]);

}

// Report the number of links to each instance.
std::cout << "Left boundary is linked to " << cp_left.nLinks()

<< " instances" << std::endl;
std::cout << "Bottom boundary is linked to " << cp_bottom.nLinks()

<< " instances" << std::endl;
for (int i=0; i<nx*ny; i++)

std::cout << "Instance " << i << " is linked to " << cp[i].nLinks()
<< " instances" << std::endl;

std::cout << "Top boundary is linked to " << cp_top.nLinks()
<< " instances" << std::endl;

std::cout << "Right boundary is linked to " << cp_right.nLinks()
<< " instances" << std::endl;

51



ChemPlugin User’s Guide

// Any keystroke closes the console.
std::cin.get();
delete[ ] cp;
return 0;

}

produces the console output

Link ChemPlugin instances into a 5 by 3 grid

Left boundary is linked to 3 instances
Bottom boundary is linked to 5 instances
Instance 0 is linked to 4 instances
Instance 1 is linked to 4 instances
Instance 2 is linked to 4 instances
Instance 3 is linked to 4 instances
Instance 4 is linked to 4 instances
Instance 5 is linked to 4 instances
Instance 6 is linked to 4 instances
Instance 7 is linked to 4 instances
Instance 8 is linked to 4 instances
Instance 9 is linked to 4 instances
Instance 10 is linked to 4 instances
Instance 11 is linked to 4 instances
Instance 12 is linked to 4 instances
Instance 13 is linked to 4 instances
Instance 14 is linked to 4 instances
Top boundary is linked to 5 instances
Right boundary is linked to 3 instances

8.4.3 Bifurcating tree
Finally, we look at a client program that builds a bifurcating tree of 4 levels.

Since there are 2N � 1 nodes in a bifuncating tree of N levels, there will be 15
ChemPlugin instances in our linked domain.

52



Linking Instances

The client program is given:

int main(int argc, char** argv) {
int nlevel = 4;
std::cout << "Link ChemPlugin instances into a " << nlevel

<< " bifurcating tree" << std::endl << std::endl;

// Create the ChemPlugin instances.
int ninst = pow(2, nlevel) - 1;
ChemPlugin *cp = new ChemPlugin[ninst];

// Link the instances into a tree.
int inst = 0, linked_inst = 1;
for (int level=0; level<nlevel-1; level++) {

for (int i=0; i<pow(2, level); i++) {
cp[linked_inst++].Link(cp[inst]);
cp[linked_inst++].Link(cp[inst]);
inst++;

}
}

// Report the number of links to each instance.
for (int i=0; i<ninst; i++)

std::cout << "Instance " << i << " is linked to " << cp[i].nLinks()
<< " instance(s)" << std::endl;

// Any keystroke closes the console.
std::cin.get();
delete[ ] cp;
return 0;

}

Running the client produces the following output:

Link ChemPlugin instances into a 4 bifurcating tree

Instance 0 is linked to 2 instance(s)
Instance 1 is linked to 3 instance(s)
Instance 2 is linked to 3 instance(s)
Instance 3 is linked to 3 instance(s)
Instance 4 is linked to 3 instance(s)
Instance 5 is linked to 3 instance(s)
Instance 6 is linked to 3 instance(s)
Instance 7 is linked to 1 instance(s)
Instance 8 is linked to 1 instance(s)
Instance 9 is linked to 1 instance(s)
Instance 10 is linked to 1 instance(s)
Instance 11 is linked to 1 instance(s)

53



ChemPlugin User’s Guide

Instance 12 is linked to 1 instance(s)
Instance 13 is linked to 1 instance(s)
Instance 14 is linked to 1 instance(s)

8.4.4 C++ source code
Source code for the examples above are given in files “Links1.cpp”, “Links2.cpp”, and
“Links3.cpp”, which can be downloaded from the ChemPlugin.GWB.com website.

Note: This code is also available in FORTRAN and Python from ChemPlugin.
GWB.com.

54



Flow and Transport

Advective transport is the movement of chemical components among ChemPlugin
instances, as the result of fluid flowing across links. To model advective transport, a
client program must set the rate at which fluid crosses each link in a simulation, in
terms of volume per unit time. The ChemPlugin instances on either side of a link,
then, use that flow rate to figure fluxes across the link, in moles per unit time, of the
chemical components considered in the simulation.

Specifically, if Q is the flow rate across a link, in units of m3 s�1, then the advective
flux J o

i of chemical component i , in mol s�1, is given

J o
i D QCi (9.1)

where Ci is the concentration of i , in mol m�3.
This transport law is set out in terms of the concentration itself, rather than a

derivative. As such, advective transport is commonly referred to as a zero-order
process; hence, the notation J o

i . The topic of first-order transport, in which the transport
law is written in terms of the gradient (i.e., the first-order derivative) of concentration,
is treated in the next chapter.

9.1 Flow rate
A client program uses the “FlowRate()” member function to specify the flow rate across
a link, or to retrieve such a value, as previously set.

9.1.1 Setting the flow rate
To set the rate at which fluid moves across a link, the client passes “FlowRate()” the
fluid volume crossing the link per unit time. Flow is by convention positive when it
moves toward the instance that created the link, and negative in the opposite direction.
For example, in the code

ChemPlugin cp0, cp1;
cp0.Link(cp1);

flow from “cp1” toward “cp0” is positive in sign, whereas flow away from “cp0” is
negative.

55



ChemPlugin User’s Guide

The “FlowRate()” function is a member of the “CpiLink” class, so it is used as follows:

ChemPlugin cp0, cp1;
CpiLink link = cp0.Link(cp1);
link.FlowRate(.52e6, "cm3/s");

The function takes two arguments: the value of the flow rate and, optionally, the unit
in which the value is cast. Units for the flow rate include “cm3/s”, “m3/yr”, “gal/day”,
and so on, as set out in the Units Recognized appendix. If the client does not specify
a second argument,

link.FlowRate(.52);

the value is taken to be in m3 s�1.

9.1.2 Retrieving the flow rate
The client program can also use the “FlowRate()” member function to determine the
rate of flow across a link, once it has been set. To do so, the client calls the member
function without specifying a value. Following from above, the statement

double flow = link.FlowRate("cm3/s");

stores in variable “flow” the current flow rate across “link”, in units of cm3 s�1.
Alternatively, the statement

double flow = link.FlowRate();

stores the flow rate, cast in the default units, m3 s�1.

9.1.3 Steady and transient flow
A client program may set the flow rate across each link once, at the onset of the
simulation. The flow field in this case is invariant in time, or steady. Alternatively,
the client may specify flow repeatedly, upon commencing each time step, in order to
construct a transient flow field.

9.2 Stability
In solving for flow and transport using a finite-volume code like ChemPlugin, numerical
stability of the time stepping is limited by the Courant condition. The Courant condition
requires that a time step not exceed the time required to displace all the fluid from a
ChemPlugin instance.

The fraction of an instance’s fluid displaced over a time step is the Courant number
Co. If Vf is the volume of fluid contained in an instance, in m3, and Q` is the flow rate

56



Flow and Transport

across a link `, in m3 s�1, then the Courant condition can be expressed

Co D

0@ X
`WQ`>0

Q`

1A�t.Vf � 1 (9.2)

Here, we find the Courant number by adding together the flow rates of each link with
a positive flow rate—that is, each link transporting fluid into the instance—multiplying
by the time step �t , and dividing by Vf .

Each ChemPlugin instance carries a limiting Courant number C lim
o that it uses to

constrain the time step returned by “ReportTimeStep()”, according to the inequality
above. As such,

�t D C lim
o Vf

.0@ X
`WQ`>0

Q`

1A (9.3)

The value of C lim
o is carried by default as 1.0, but a client program may set it to any

value in the range 0 < C lim
o � 1 with the “Courant” configuration command:

cp.Config("Courant = 0.5");

In this example, no more than half the fluid in instance “cp” will be displaced over a
time step.

9.3 Flow-through reactor
As an example of how a client program can use linked ChemPlugin instances to
model reaction processes in open systems, we construct here a client program that
simulates a well-stirred flow-through reactor.

In our program, a ChemPlugin instance “cp_inlet” represents the inlet fluid that passes
into the well-stirred reactor, which is represented by instance “cp”. Fluid from “cp_inlet”
flows across a link into “cp”, displacing fluid from it. The displaced fluid follows an
open link to the free outlet, where it is lost.

57



ChemPlugin User’s Guide

9.3.1 Program structure
The client program works by setting up a ChemPlugin instance for the inlet fluid and
another for the stirred reactor. The client then links the instances and sets the flow
rate across the links.

The general structure of the client is:

#include <iostream>
#include "ChemPlugin.h"

int main(int argc, char** argv) {
std::cout << "Model a flow-through reactor" << std::endl << std::endl;

// Configure and initialize the inlet fluid.
... set up the inlet fluid ...

// Configure and initialize the stirred reactor.
... set up the stirred reactor ...

// Link reactor to inlet and free outlet; set rate of flow.
... link the instances and set flow rates ...

// Time marching loop.
... time marching loop goes here ...

// Any keystroke closes the console.
std::cin.get();
return 0;

}

We will discuss each part of the client in the sections below.

9.3.2 Inlet fluid
To begin, the client sets a ChemPlugin instance “cp_inlet” to represent the inlet fluid,
which is a dominantly HCl solution of pH 1.

// Configure and initialize the inlet fluid.
ChemPlugin cp_inlet("stdout");
const char *cmds = "Ca++ = 1 mmol/kg; HCO3- = 1 mmol/kg;"

"pH = 1; balance on Cl-";
cp_inlet.Config(cmds);
cp_inlet.Initialize();

The client creates the instance, setting it to write out console messages, configures
it according to the character string pointed to by “cmds”, and initializes it.

The inlet instance serves in the program as a static fluid of known composition.
There is no need to specify a time span for the instance, nor does the instance’s

58



Flow and Transport

extent (i.e., its volume or mass) need to be known; by the zero-order equation above,
the concentrations but not the masses of the fluid’s chemical components enter into
the transport calculation.

9.3.3 Stirred reactor
Next, the client sets a ChemPlugin instance “cp” to act in the simulation as a stirred
reactor.

// Configure and initialize the stirred reactor.
ChemPlugin cp("stdout");
cmds = "swap Calcite for Ca++; Calcite = 0.03 free m3; Cl- = 1 mmol/kg;"

"swap CO2(g) for H+; fugacity CO2(g) = 1; balance on HCO3-;"
"volume = 1 m3; fix f CO2(g); delxi = 0.01; pluses = banner";

cp.Config(cmds);
cp.Initialize(1.0, "day");

The client configures the instance to contain a fluid in equilibrium with CaCO3 and
a CO2 reservoir of known fugacity, which is held constant over the simulation. The
instance volume is set to 1 m3, of which 0.03 m3 consists of CaCO3.

Setting “delxi” to 0.01 prescribes the simulation traverse 100 times steps over the
course of the simulation, which is set to span 1 day. The command “pluses = banner”
sets the instance to write a banner-style output at each reaction step.

9.3.4 Links and flow rates
We next link instance “cp” to instance “cp_inlet”, create an open link from “cp”, and
set a flow rate across each link.

// Link reactor to inlet and free outlet; set rate of flow.
CpiLink link1 = cp.Link(cp_inlet);
CpiLink link2 = cp.Outlet();

link1.FlowRate(10.0, "m3/day");
link2.FlowRate(-10.0, "m3/day");

Since the flow rate is 10 m3 day�1 and the simulation spans 1 day, 10 m3 of fluid will
pass into “cp”, and an equivalent volume will be displaced across the free outlet.

Note especially that the flow rate across the first link, from “cp” to “cp_inlet”, is
positive, since fluid is flowing toward “cp”. The rate at which fluid is displaced across
the second link, the free outlet, on the other hand, is negative, since flow is in this
case away from “cp”.

9.3.5 Time marching loop
The time marching loop is similar to the loop we constructed in the first program we
wrote, in the Titration Simulator chapter, except we have added a call to member
function “AdvanceTransport()”:

59



ChemPlugin User’s Guide

// Time marching loop.
cp.PlotHeader("FlowThrough.gtp", "char");
cp.PlotBlock();
while (true) {

double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceTransport()) break;
if (cp.AdvanceChemical()) break;
cp.PlotBlock();

}

By calling “AdvanceTransport()”, we trigger instance “cp” to account for how flow from
“cp_inlet” into “cp”, as well as flow from “cp” into the free outlet, affect the chemical
compositionof the reactor.Note thatwe’veusedcalls tomember functions “PlotHeader()”
and “PlotBlock()” to trigger “cp” to create a plot output file, “FlowThrough.gtp”.

9.3.6 Program output
Running our client program produces the following output:

Model a flow-through reactor

Solving for initial system.

Loaded: 12 aqueous species,
13 minerals,
2 gases,
0 surface species,
5 elements,
2 oxides.

Solving for initial system.

Loaded: 12 aqueous species,
13 minerals,
2 gases,
0 surface species,
5 elements,
2 oxides.

Step 0, Xi = 0 (85 iterations)
Charge balance: HCO3- molality adjusted from 1.02e-6 to -.001003

Step 1, Xi = .01 (31 iterations)
Step 2, Xi = .02 (29 iterations)
Step 3, Xi = .03 (28 iterations)

60



Flow and Transport

Step 4, Xi = .04 (28 iterations)
Step 5, Xi = .05 (28 iterations)

... and so on ...

Step 100, Xi = 1 (16 iterations)

Successful completion of reaction path.

Once the run completes, we can open dataset “FlowThrough.gtp” with program Gtplot
to render the calculation results graphically.

9.3.7 C++ source code
The complete C++ source code to our flow-through simulator can be downloaded from
the ChemPlugin.GWB.com website as file “FlowThrough1.cpp”, and is listed below.

Note: This code is also available in FORTRAN and Python from ChemPlugin.
GWB.com.

#include <iostream>
#include "ChemPlugin.h"

int main(int argc, char** argv) {
std::cout << "Model a flow-through reactor" << std::endl << std::endl;

// Configure and initialize the inlet fluid.
ChemPlugin cp_inlet("stdout");
const char *cmds = "Ca++ = 1 mmol/kg; HCO3- = 1 mmol/kg;"

"pH = 1; balance on Cl-";
cp_inlet.Config(cmds);
cp_inlet.Initialize();

// Configure and initialize the stirred reactor.
ChemPlugin cp("stdout");
cmds = "swap Calcite for Ca++; Calcite = 0.03 free m3; Cl- = 1 mmol/kg;"

"swap CO2(g) for H+; fugacity CO2(g) = 1; balance on HCO3-;"
"volume = 1 m3; fix f CO2(g); delxi = 0.01; pluses = banner";

cp.Config(cmds);
cp.Initialize(1.0, "day");

// Link reactor to inlet and free outlet; set rate of flow.
CpiLink link1 = cp.Link(cp_inlet);
CpiLink link2 = cp.Outlet();

link1.FlowRate(10.0, "m3/day");
link2.FlowRate(-10.0, "m3/day");

// Time marching loop.

61



ChemPlugin User’s Guide

cp.PlotHeader("FlowThrough.gtp", "char");
cp.PlotBlock();
while (true) {

double deltat = cp.ReportTimeStep();
if (cp.AdvanceTimeStep(deltat)) break;
if (cp.AdvanceTransport()) break;
if (cp.AdvanceChemical()) break;
cp.PlotBlock();

}

// Any keystroke closes the console.
std::cin.get();
return 0;

}

62



Diffusion and Dispersion

Diffusive transport is the movement of chemical components in response to gradients
in concentration. The transport arises due to chemical and physical processes, such
as molecular diffusion, hydrodynamic dispersion, and turbulent mixing.

Transport of this nature is commonly described by Fick’s first law

J 1
i D �AD

dCi

dx
(10.1)

In this equation,J 1
i is the flux of chemical component i , in mol s�1;A is the cross-sectional

area across which transport occurs, in m2; D is a Fickian coefficient, in m2 s�1; Ci is
the concentration of component i , in mol m�3; and x is the spatial coordinate between
two ChemPlugin instances, in m, positive displacement being toward the originating
instance. The notation J 1

i reflects the first-order derivative in the transport law.
The precise form ofD depends on the process being represented. To model molecular

diffusion in porous media, D D nD�, where n is porosity and D� is the diffusion
coefficient for the medium, accounting for its tortuosity. In the case of hydrodynamic
dispersion, D D n.˛vx CD

�/, where ˛ is dispersivity in m, vx is fluid velocity along x
in m s�1, and n and D� are as before. For turbulent mixing, D is the eddy diffusivity
K in m2 s�1.

To model diffusive transport across a link, a client program supplies a transmissivity
that describes the rate of first-order transport, per unit concentration difference between
ChemPlugin instances. The following section describes the transmissivity coefficient.

10.1 Transmissivity
ChemPlugin instances employ a transmissivity � , in units of m3 s�1, to calculate the
first-order mass fluxes, according to the equation

J 1
i D ��

�
C

j
i � C

linked
i

�
� �AD

dCi

dx
(10.2)

63



ChemPlugin User’s Guide

Here, C j
i and C linked

i are the concentrations of component i at the originating and
linked instances, respectively. The transmissivity, then, is defined

� D
AD

�x
�
AD

dx
(10.3)

by the cross-sectional area A, Fickian coefficient D, and separation �x between
instances.

10.1.1 Determining transmissivity
To model first-order mass transport among ChemPlugin instances, the client program
must specify a value for the transmissivity of each link. A link’s transmissivity reflects
the geometry of the linked instances, as well as the Fickian coefficient for each.

Consider two linked instances j and j C 1, each of which is a rectangular prism

Here �x is the x dimension of the prisms, and A is the product �y�z of the dimensions
along y and z.

If the prisms are equally sized, so �xj D �xjC1 D �x and Aj D AjC1 D A, and if
the Fickian coefficient representing each is the same, so Dj D DjC1 D D, then the
transmissivity �

� D
AD

�x
(10.4)

is given directly.
In a heterogeneous case in which Dj ¤ DjC1, the transmissivity � is the harmonic

mean

� D
2

1=�j C 1=�jC1
(10.5)

of the transmissivity �j at instance j and the value �jC1 at instance j C 1

�j
D
ADj

�x
�jC1

D
ADjC1

�x
(10.6)

64



Diffusion and Dispersion

Substituting gives the transmissivity

� D

�
2A

�x

�
DjDjC1

Dj CDjC1
(10.7)

appropriate for describing first-order transport across the link between j and j C 1.
More generally, the instances may be cast in an adaptive grid, or in non-Cartesian

coordinates, such as radial, spherical, and curvilinear. The instances, then, may be
of varying size, such that �xj depends on position j , as does the cross-sectional
area Aj . In this case,

�j
D
AjDj

�xj
D

�
AD

�x

�j

�jC1
D
AjC1DjC1

�xjC1
D

�
AD

�x

�jC1

(10.8)

Taking once again the harmonic mean gives the transmissivity

� D
2
�

AD
�x

�j �AD
�x

�jC1�
AD
�x

�j
C
�

AD
�x

�jC1
(10.9)

appropriate for the heterogeneous, arbitrarily gridded case.

10.1.2 Setting transmissivity
A client uses member function “Transmissivity()” to set transmissivity across a link.
Like “FlowRate()”, “Transmissivity()” is a member of the “CpiLink” class; the function
is used as follows:

ChemPlugin cp0, cp1;
CpiLink link = cp0.Link(cp1);
link.Transmissivity(2.e-3, "m3/s");

The unit field may be any unit of flow rate as set out in the Units Recognized appendix.
If the client does not specify a second argument,

link.Transmissivity(2.e-3);

the value is taken to be in m3 s�1.

10.1.3 Retrieving the transmissivity
When the “Transmissivity()” member function is called without an argument, it returns
the transmissivity currently set for a link. For example, the statement

double trans = link.Transmissivity("cm3/s");

65



ChemPlugin User’s Guide

stores the current transmissivity value across “link” in variable “trans”, in units of cm3

s�1. The statement

double trans = link.Transmissivity();

returns the value cast in the default units, m3 s�1.

10.2 Numerical stability
If Dx, Dy , and Dz are the Fickian coefficient D along the principal coordinates, von
Neumann’s criterion for numerical stability of a finite difference procedure requires
that the time step �t satisfy

2

�
Dx

n�x2
C

Dy

n�y2
C

Dz

n�z2

�
�t � 1 (10.10)

where n is the porosity of a porous medium, or unity when considering transport in an
open channel, and �x, �y, and �z are the dimensions of the nodal block. Multiplying
both sides of the equation by the fluid volume

Vf D n�x�y�z (10.11)

and substituting the transmissivities

�x D
AxDx

�x
�y D

AyDy

�y
�z D

AzDz

�z
(10.12)

gives

�t � Vf

.�
�j�1/2

x C �jC1/2
x C �k�1/2

y C �kC1/2
y C � l�1/2

z C � lC1/2
z

�
(10.13)

Here, �j�1/2
x represents the transmissivity between node j and j � 1, �jC1/2

x is
transmissivity between j and j C 1, and so on.

Generalizing to a finite volume linked to an arbitrary number of other volumes, the
equation becomes

�t � Vf

. X
`

�`

!
(10.14)

66



Diffusion and Dispersion

where ` indexes the links, each of which has an associated transmissivity �`. Recasting
this expression, �t is given uniquely by

�t D XstableVf

. X
`

�`

!
(10.15)

where Xstable is a value � 1 provided by the user.
The value in ChemPlugin of Xstable is by default 1.0, but that is the boundary between

stability and instability. As such, the user may wish to set a somewhat smaller value,
which is accomplished by issuing within the client program the “Xstable” configuration
command:

cp.Config("Xstable = 0.9");

In this case, the value of Xstable carried by instance “cp” is set to 0.9. If the client
program then executed

double deltat = cp.ReportTimeStep();

the value returned to “deltat” would account for this setting.

10.3 Model of diffusion
As a demonstration of how a client program can use ChemPlugin to model diffusive
transport, we construct here a one-dimensional model of diffusion within a porous
medium. In our model, the domain is 100 cm long and contains a NaCl solution of
concentration 1 mmol/kg where 0 � x < 50 cm, and 0.001 mmol/kg where 50 < x �
100 cm. At t = 0, the salt begins diffusing from left to right, toward large x.

10.3.1 Program structure
The client program is laid out as follows:

#include <iostream>
#include <fstream>
#include <string>
#include "ChemPlugin.h"

int exit_client(int status)
{

std::cin.get();
return status;

}

void write_line(std::ofstream& f, ChemPlugin *cp, int nx,
double gap, double& then)

67



ChemPlugin User’s Guide

{
... output function goes here ...

}

int main(int argc, char** argv) {
std::cout << "Model diffusion in one dimension"

<< std::endl << std::endl;

// Simulation parameters.
... simulation parameters are set out here ...

// Open output file and write instance positions on the first line.
... output file is opened and initialized here ...

// Configure and initialize the instances.
... instances are created, configured, and initialized here ...

// Link the instances.
... links among the instances are created and defined here ...

// Time marching loop.
... time marching loop goes here ...

// Never gets here.
return 0;

}

Two functions and the client program immediately follow the header lines at the top
of the file. Function “exit_client()” provides a convenient way to ensure the console
window does not close immediately when the client program completes, whether the
client reaches the end of the simulation normally or encounters an error. Function
“write_line()” writes out the calculation results at time levels separated by “gap” years,
rather than writing results at each step, as set out in the next section. Finally, function
“main()” is the client program itself, laid out here in subsections described below.

10.3.2 Output function
The purpose of function “write_line()” is to write the simulation results to a file at
specific points in time, instead of writing output after each time step, which would be
unwieldy. The code is:

void write_line(std::ofstream& f, ChemPlugin *cp, int nx,
double gap, double& then)

{
double now = cp[0].Report1("Time", "years");
if ((then - now) < gap / 1e4) {

f << now;
for (int i=0; i<nx; i++)

68



Diffusion and Dispersion

f << "\ t" << cp[i].Report1("concentration Na+", "mmol/kg");
f << std::endl;
then += gap;

}
}

Here, “f” is a reference to the output stream, “cp” is the origin of a vector of “nx”
references to ChemPlugin instances, “gap” is the separation in years between output
points, and “then” is a reference to a memory location in the calling program. The
memory location holds the time level, in years, at which the next output event is to
occur.

10.3.3 Simulation parameters
The simulation parameters are the numerical values that define the transport model.

// Simulation parameters.
int nx = 100; // number of instances along x
double length = 100; // cm
double deltax = length / nx; // cm
double deltay = 1.0, deltaz = 1.0; // cm
double porosity = 0.25; // volume fraction

double diffcoef = 1e-6; // cm2/s
double trans = deltay * deltaz * porosity * diffcoef / deltax; // cm3/s

double xstable = 0.9;

double time_end = 15.0; // years
double delta_years = time_end / 3; // years
double next_output = 0.0; // years

Here, we note the length “deltax” of the instances is the domain size “length” divided
by the number “nx” of ChemPlugin instances carried. The transmissivity “trans” is the
product of the cross-sectional area “deltay * deltaz”, the porosity, and the diffusion
coefficient “diffcoef”, divided by “deltax”.

Variable “xstable” holds the stability factor Xstable, and “time_end” is the duration of
the simulation. The value set for “delta_years” is the gap between the output events,
and “next_output” is the time level at which the next event is to be triggered.

10.3.4 Output file
The next block of code opens an output stream to a disk file and writes a line identifying
the position along x at which each ChemPlugin instance will be positioned.

// Open output file and write instance positions on the first line.
std::ofstream f;
f.open("Diffusion.txt");

69



ChemPlugin User’s Guide

if (f.is_open()) {
f << "years";
for (int i=0; i<nx; i++)

f << "\t" << (i+0.5) * deltax;
f << std::endl;

}
else {

std::cout << "Failed to open output file" << std::endl;
return exit_client(-1);

}

10.3.5 Configuring and initializing instances
Next, the client program sets out to create, configure, and initialize each ChemPlugin
instance making up the domain.

// Configure and initialize the instances.
std::string cmd0 = "volume = " + std::to_string(deltax * deltay * deltaz) +

" cm3; porosity = " + std::to_string(porosity) +
"; time end = " + std::to_string(time_end) +
" years; Xstable = " + std::to_string(xstable);

std::string cmd1 = "Na+ = 1 mmol/kg; Cl- = 1 mmol/kg";
std::string cmd2 = "Na+ = 0.001 mmol/kg; Cl- = 0.001 mmol/kg";

ChemPlugin *cp = new ChemPlugin[nx];
cp[0].Console("stdout");
cp[0].Config("pluses = banner");

for (int i=0; i<nx; i++) {
cp[i].Config(cmd0);
if (i < nx/2)

cp[i].Config(cmd1);
else

cp[i].Config(cmd2);

if (cp[i].Initialize()) {
std::cout << "Instance " << i << " failed to initialize" << std::endl;
return exit_client(-1);

}
}
write_line(f, cp, nx, delta_years, next_output);

The first lines of the code set three character strings to hold ChemPlugin configuration
commands: “cmd0”, “cmd1”, and “cmd2”. The former, “cmd0”, is to be applied to each
of the instances, whereas “cmd1” pertains to instances on the left side of the domain,
and “cmd2” to only the right-side instances.

70



Diffusion and Dispersion

The client next instantiates a vector of “nx” instances, but sets only the first to write
console out messages, using the “banner” format to trace time stepping. If each of the
instances had been set to produce console output, the result would be overwhelming
and largely redundant. Finally, the client enters a loop in which it configures each
ChemPlugin instance in the domain, and initializes it. If any of the instances does not
initialize, the client exits with a non-zero status code.

10.3.6 Linking instances
The loop for linking the instances into a one-dimensional chain and setting trans-
missivity for each link is:

// Link the instances.
for (int i=1; i<nx; i++) {

CpiLink link = cp[i].Link(cp[i-1]);
link.Transmissivity(trans, "cm3/s");

}

The loop starts by linking the second instance (index 1) to the first (index 0), then links
the third to the second, and so on. For each link, the client sets the corresponding
transmissivity, as previously stored in “trans”.

Note the best practice of linking an instance to the instance behind it, rather than
in front of it. Flow across a link in ChemPlugin is positive when it moves toward the
instance that originated the link, away from the linked instance. By the convention of
linking backward, then, flow is positive toward instances of increasing index.

10.3.7 Time marching loop
The time marching loop begins each pass by querying the instances for the preferred
time step, as determined honoring the stability considerations outlined above. Then,
taking the minimum of the steps reported, it steps forward in time, advances the
transport equations, and advances the chemical equations. Finally, it passes the results
to “write_line()” and returns to make another step.

The time marching code is:

// Time marching loop.
while (true) {

double deltat = 1e99;
for (int i=0; i<nx; i++)

deltat = std::min(deltat, cp[i].ReportTimeStep());
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTimeStep(deltat)) return exit_client(0);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTransport()) return exit_client(-1);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceChemical()) return exit_client(-1);

71



ChemPlugin User’s Guide

write_line(f, cp, nx, delta_years, next_output);
}

If any step in time stepping—advancing the time level, the transport equations, or
the chemical equations—yields a non-zero return at any instance, the client program
exits by issuing:

return exit_client(. . . );

In this way, the console remains open until the user touches the return key. The
argument “. . . ” is zero following a call to “AdvanceTimeStep()”, since a non-zero
return status commonly indicates the time marching is complete, rather than an error
condition. Following calls to “AdvanceTransport()” or “AdvanceChemical()”, on the
other hand, the argument is -1, since a non-zero return from these functions indicates
an error has occurred.

10.3.8 Running the client
Running the client produces the following

Model diffusion in one dimension

Solving for initial system.

Loaded: 3 aqueous species,
1 minerals,
1 gases,
0 surface species,
4 elements,
0 oxides.

Step 0, Xi = 0 (19 iterations)
Charge balance: Cl- molality adjusted from 3.95 to .001

Step 1, Xi = .000845 (2 iterations)
Step 2, Xi = .00169 (2 iterations)
Step 3, Xi = .002535 (2 iterations)
Step 4, Xi = .00338 (2 iterations)
Step 5, Xi = .004225 (2 iterations)
... and so on ...
Step 1183, Xi = .9997 (3 iterations)
Step 1184, Xi = 1 (3 iterations)

Successful completion of reaction path.

on the console window.

72



Diffusion and Dispersion

Once the run is complete, opening file “Diffusion.txt” in a graphing program such as
Excel lets you quickly plot the salinity profile across the domain at various points in the
simulation. The plot below shows the calculation results after 5 years and 15 years.

0

.2

.4

.6

.8

1

0 20 40 60 80 100

Concentra on
mmol/kg

Posi on (cm)

t = 0

5 years

15 years

The circles in the diagram correspond to the analytic solution to the diffusion equation
at t = 15 years, from Carslaw and Jaeger’s 1959 text, demonstrating correctness of
the client’s results.

10.3.9 C++ source code
The complete C++ source code may be downloaded as file “Diffusion1.cpp” from the
ChemPlugin.GWB.com website, and is listed below.

Note: This code is also available in FORTRAN and Python from ChemPlugin.
GWB.com.

#include <iostream>
#include <fstream>
#include <string>
#include "ChemPlugin.h"

int exit_client(int status)
{

std::cin.get();
return status;

}

void write_line(std::ofstream& f, ChemPlugin *cp, int nx,
double gap, double& then)

{
double now = cp[0].Report1("Time", "years");
if ((then - now) < gap / 1e4) {

f << now;
for (int i=0; i<nx; i++)

73



ChemPlugin User’s Guide

f << "\t" << cp[i].Report1("concentration Na+", "mmol/kg");
f << std::endl;
then += gap;

}
}

int main(int argc, char** argv) {
std::cout << "Model diffusion in one dimension"

<< std::endl << std::endl;

// Simulation parameters.
int nx = 100; // number of instances along x
double length = 100; // cm
double deltax = length / nx; // cm
double deltay = 1.0, deltaz = 1.0; // cm
double porosity = 0.25; // volume fraction

double diffcoef = 1e-6; // cm2/s
double trans = deltay * deltaz * porosity * diffcoef / deltax; // cm3/s

double xstable = 0.9;

double time_end = 15.0; // years
double delta_years = time_end / 3; // years
double next_output = 0.0; // years

// Open output file and write instance positions on the first line.
std::ofstream f;
f.open("Diffusion.txt");
if (f.is_open()) {

f << "years";
for (int i=0; i<nx; i++)

f << "\t" << (i+0.5) * deltax;
f << std::endl;

}
else {

std::cout << "Failed to open output file" << std::endl;
return exit_client(-1);

}

// Configure and initialize the instances.
std::string cmd0 = "volume = " + std::to_string(deltax * deltay * deltaz) +

" cm3; porosity = " + std::to_string(porosity) +
"; time end = " + std::to_string(time_end) +
" years; Xstable = " + std::to_string(xstable);

std::string cmd1 = "Na+ = 1 mmol/kg; Cl- = 1 mmol/kg";
std::string cmd2 = "Na+ = 0.001 mmol/kg; Cl- = 0.001 mmol/kg";

74



Diffusion and Dispersion

ChemPlugin *cp = new ChemPlugin[nx];
cp[0].Console("stdout");
cp[0].Config("pluses = banner");

for (int i=0; i<nx; i++) {
cp[i].Config(cmd0);
if (i < nx/2)

cp[i].Config(cmd1);
else

cp[i].Config(cmd2);

if (cp[i].Initialize()) {
std::cout << "Instance " << i << " failed to initialize" << std::endl;
return exit_client(-1);

}
}
write_line(f, cp, nx, delta_years, next_output);

// Link the instances.
for (int i=1; i<nx; i++) {

CpiLink link = cp[i].Link(cp[i-1]);
link.Transmissivity(trans, "cm3/s");

}

// Time marching loop.
while (true) {

double deltat = 1e99;
for (int i=0; i<nx; i++)

deltat = std::min(deltat, cp[i].ReportTimeStep());
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTimeStep(deltat)) return exit_client(0);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTransport()) return exit_client(-1);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceChemical()) return exit_client(-1);

write_line(f, cp, nx, delta_years, next_output);
}

// Never gets here.
return 0;

}

75



76



Advection-Dispersion Model

In this chapter, we build on the ideas in the previous two chapters to create a model
of simultaneous advective and diffusive transport. We begin by considering issues of
numerical stability and then lay out a client program that uses ChemPlugin to solve
the advection-dispersion equation in one dimension.

11.1 Numerical stability
The stability criterion for solving the advection-dispersion equation using a finite volume
scheme follows from the Courant condition and von Neumann’s analysis, as presented
in the previous two chapters. In a three-dimensional Cartesian domain, the time step
�t must satisfy the inequality

�
jvxj

�x
C
jvy j

�y
C
jvzj

�z
C

2Dx

n�x2
C

2Dy

n�y2
C

2Dz

n�z2

�
�t � 1 (11.1)

to ensure stability. Here, vx, vy , and vz are the fluid velocities along the principal
coordinates; Dx, Dy , and Dz are the Fickian coefficients; �x, �y, and �z are the
dimensions of the finite volume; and n is porosity, which is one for open-channel flow.

Multiplying this equation as before by Vf D n�x�y�z, we note that the terms
AxDx=�x, AyDy=�y, and AzDz=�z correspond to transmissivities �` across the links
` in the associated direction. As well, the terms Axvx=n, Ayvy=n, and Azvz=n are the
fluxes Q` across the links. The limiting time step, which we denote �t1, then, can be
calculated according to the equation

�t1 D Vf

.0@ X
`WQ`>0

Q` C

X
`

�`

1A (11.2)

which combines the results in the previous two chapters into a single equation.
ChemPlugin calculates a second limiting time step �t2

�t2 D C
lim
o Vf

.0@ X
`WQ`>0

Q`

1A (11.3)

77



ChemPlugin User’s Guide

to account for the possibility that a value of C lim
o ¤ 1 has been set by the client

program, as well as a value �t3

�t3 D XstableVf

. X
`

�`

!
(11.4)

to account for non-default settings for Xstable. The limiting step reported by “Report-
TimeStep()”

�t D min.�t1; �t2; �t3/ (11.5)

is the least of the three values.

11.2 Advection-dispersion model
In this section, we lay out a client program that traces advection and dispersion over
time in a single dimension.

11.2.1 Program structure
The client structure is the same as that for the program we used to trace diffusion:

#include <iostream>
#include <fstream>
#include <string>
#include "ChemPlugin.h"

int exit_client(int status)
{

std::cin.get();
return status;

}

void write_line(std::ofstream& f, ChemPlugin *cp, int nx,
double gap, double& then)

{
... output function goes here ...

}

int main(int argc, char** argv) {
std::cout << "Model advection-dispersion in one dimension"

<< std::endl << std::endl;

// Simulation parameters.
... simulation parameters are set out here ...

78



Advection-Dispersion Model

// Open output file and write instance positions on the first line.
... output file is opened and initialized here ...

// Configure and initialize the inlet and interior instances.
... instances are created, configured, and initialized here ...

// Link the instances.
... links among the instances are created and defined here ...

// Time marching loop.
... time marching loop goes here ...

// Never gets here.
return 0;

}

We explain here only those sections of the program that differ from program
“Diffusion1.cpp”, the client we developed in the previous chapter.

11.2.2 Simulation parameters
The simulation parameters carried at the top of the program parallel the parameters in
the diffusion model, with the addition of terms reflecting the passage of fluid through
the domain:

// Simulation parameters.
int nx = 400; // number of instances along x
double length = 100; // m
double deltax = length / nx; // m
double deltay = 1.0, deltaz = 1.0; // m
double porosity = 0.25; // volume fraction

double veloc_in; // m/yr
std::cout << "Please enter fluid velocity in m/yr: ";
std::cin >> veloc_in;
std::cin.ignore();

double velocity = veloc_in / 31557600.; // m/s
double flow = deltay * deltaz * porosity * velocity; // m3/s

double diffcoef = 1e-10; // m2/s
double dispersivity = 1.0; // m
double dispcoef = velocity * dispersivity + diffcoef; // m2/s
double trans = deltay * deltaz * porosity * dispcoef / deltax; // m3/s

double time_end = 10.0; // years
double delta_years = time_end / 5; // years
double next_output = 0.0; // years

79



ChemPlugin User’s Guide

Here, the client queries the user for the fluid velocity vx, which it uses to figure the
flow rate Qx

Qx D Ax n vx D �y �z n vx (11.6)

The transmissivity �x, in turn, is given by

�x D �y �z n
�
˛vx CD

�
�

(11.7)

from the dispersivity ˛ and diffusion coefficient D�.

11.2.3 Configure and initialize instances
The client creates a ChemPlugin instance “cp_inlet” to represent the composition of
the inlet fluid, as well as an array “cp” of “nx” ChemPlugin instances to represent
discrete segments of the domain. The client configures each instance with member
function “Config()” and initializes it with function “Initialize()”, trapping any return status
indicating failure.

The code is:

// Configure and initialize the inlet and interior instances.
ChemPlugin cp_inlet;
cp_inlet.Config("Na+ = 1 mmol/kg; Cl- = 1 mmol/kg");
if (cp_inlet.Initialize()) {

std::cout << "Inlet failed to initialize" << std::endl;
return exit_client(-1);

}

ChemPlugin *cp = new ChemPlugin[nx];
cp[0].Console("stdout");
cp[0].Config("pluses = banner");

std::string cmd = "Na+ = 0.001 mmol/kg; Cl- = 0.001 mmol/kg; "
"volume = " + std::to_string(deltax * deltay * deltaz) +
" m3; porosity = " + std::to_string(porosity) +
"; time end = " + std::to_string(time_end) + " years";

for (int i=0; i<nx; i++) {
cp[i].Config(cmd);
if (cp[i].Initialize()) {

std::cout << "Instance " << i << " failed to initialize" << std::endl;
return exit_client(-1);

}
}
write_line(f, cp, nx, delta_years, next_output);

Here, we have set a 1 mmol kg�1 inlet fluid, and a dilute fluid within the domain.

80



Advection-Dispersion Model

In the case of the domain, we are careful to set the system extent with the “volume”
and “porosity” configuration commands. As well, we prescribe the end point for the
time marching, using the “time end” command. We could do the same for the inlet, but
our efforts would be wasted, since the inlet serves only as a marker for the chemistry
of the inflow and hence remains static over the simulation.

11.2.4 Link the instances
The client links the ChemPlugin instances in three steps. It links the left-side instance
(index 0) to the inlet “cp_inlet”. Then, it links each remaining instance (index 1, 2,
. . . ) to the instance at its immediate left. Finally, it sets a free outlet for the right-side
instance (index nx-1). For each link, the client sets a flow rate and transmissivity.

The code is:

// Link the instances.
CpiLink link = cp[0].Link(cp_inlet);
link.Transmissivity(trans, "m3/s");
link.FlowRate(flow, "m3/s");

for (int i=1; i<nx; i++) {
link = cp[i].Link(cp[i-1]);
link.Transmissivity(trans, "m3/s");
link.FlowRate(flow, "m3/s");

}

link = cp[nx-1].Link();
link.FlowRate(-flow, "m3/s");

Note that, except for the free outlet, we have followed the best practice of originating
each link from the instance on the right side of the pair. Flow across a link is positive
along increasing x, then, and variable “flow” gives the flow rate directly. If we had
linked the instances in the opposite sense, we would have needed to negate “flow” in
our calls to “FlowRate()”.

The free outlet on the right of the domain is a special case, since the open link
is, of necessity, created by the instance at lesser x. Now, we must set the flow rate
to “-flow”. Note also that we set no transmissivity for the open link, since first-order
transport across a free outlet is not possible.

11.3 Running the model
Running the model yields console output similar to that produced by the diffusion
model in the previous chapter, and generates an output file “Advection.txt” that you
can open in Excel or another graphing application. The plot below shows the salinity
profile across the domain predicted at two year increments

81



ChemPlugin User’s Guide

0

.2

.4

.6

.8

1

0 20 40 60 80 100

Concentra�on
mmol/kg

Posi�on (m)

t = 2 years

t = 4

t = 6

t = 8

t = 10

flow

corresponding to a fluid velocity vx of 10 m yr�1. The circles in the diagram correspond
to the analytic solution to the advection-dispersion equation at t = 6 years, from page
373 of Domenico and Schwartz’s 1998 text.

The small differences between the exact solution and that predicted by our client
program are attributable in the most part to numerical dispersion. The effect of
numerical dispersion can be demonstrated by decreasing or increasing the number
“nx” of ChemPlugin instances, to coarsen or refine the discretization. Raising the
number of instances lowers the dispersion and hence improves the accuracy of the
calculated results.

11.4 C++ source code
The complete C++ source code may be downloaded as file “Advection1.cpp” from the
ChemPlugin.GWB.com website, and is listed below.

Note: This code is also available in FORTRAN and Python from ChemPlugin.
GWB.com.

#include <iostream>
#include <fstream>
#include <string>
#include "ChemPlugin.h"

int exit_client(int status)
{

std::cin.get();
return status;

}

void write_line(std::ofstream& f, ChemPlugin *cp, int nx,
double gap, double& then)

{
double now = cp[0].Report1("Time", "years");
if ((then - now) < gap / 1e4) {

82



Advection-Dispersion Model

f << now;
for (int i=0; i<nx; i++)

f << "\t" << cp[i].Report1("concentration Na+", "mmol/kg");
f << std::endl;
then += gap;

}
}

int main(int argc, char** argv) {
std::cout << "Model advection-dispersion in one dimension"

<< std::endl << std::endl;

// Simulation parameters.
int nx = 400; // number of instances along x
double length = 100; // m
double deltax = length / nx; // m
double deltay = 1.0, deltaz = 1.0; // m
double porosity = 0.25; // volume fraction

double veloc_in; // m/yr
std::cout << "Please enter fluid velocity in m/yr: ";
std::cin >> veloc_in;
std::cin.ignore();

double velocity = veloc_in / 31557600.; // m/s
double flow = deltay * deltaz * porosity * velocity; // m3/s

double diffcoef = 1e-10; // m2/s
double dispersivity = 1.0; // m
double dispcoef = velocity * dispersivity + diffcoef; // m2/s
double trans = deltay * deltaz * porosity * dispcoef / deltax; // m3/s

double time_end = 10.0; // years
double delta_years = time_end / 5; // years
double next_output = 0.0; // years

// Open output file and write instance positions on the first line.
std::ofstream f;
f.open("Advection.txt");
if (f.is_open()) {

f << "years";
for (int i=0; i<nx; i++)

f << "\t" << (i+0.5) * deltax;
f << std::endl;

}
else {

std::cout << "Failed to open output file" << std::endl;
return exit_client(-1);

83



ChemPlugin User’s Guide

}

// Configure and initialize the inlet and interior instances.
ChemPlugin cp_inlet;
cp_inlet.Config("Na+ = 1 mmol/kg; Cl- = 1 mmol/kg");
if (cp_inlet.Initialize()) {

std::cout << "Inlet failed to initialize" << std::endl;
return exit_client(-1);

}

ChemPlugin *cp = new ChemPlugin[nx];
cp[0].Console("stdout");
cp[0].Config("pluses = banner");

std::string cmd = "Na+ = 0.001 mmol/kg; Cl- = 0.001 mmol/kg; "
"volume = " + std::to_string(deltax * deltay * deltaz) +
" m3; porosity = " + std::to_string(porosity) +
"; time end = " + std::to_string(time_end) + " years";

for (int i=0; i<nx; i++) {
cp[i].Config(cmd);
if (cp[i].Initialize()) {

std::cout << "Instance " << i << " failed to initialize" << std::endl;
return exit_client(-1);

}
}
write_line(f, cp, nx, delta_years, next_output);

// Link the instances.
CpiLink link = cp[0].Link(cp_inlet);
link.Transmissivity(trans, "m3/s");
link.FlowRate(flow, "m3/s");

for (int i=1; i<nx; i++) {
link = cp[i].Link(cp[i-1]);
link.Transmissivity(trans, "m3/s");
link.FlowRate(flow, "m3/s");

}

link = cp[nx-1].Link();
link.FlowRate(-flow, "m3/s");

// Time marching loop.
while (true) {

double deltat = 1e99;
for (int i=0; i<nx; i++)

deltat = std::min(deltat, cp[i].ReportTimeStep());
for (int i=0; i<nx; i++)

84



Advection-Dispersion Model

if (cp[i].AdvanceTimeStep(deltat)) return exit_client(0);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTransport()) return exit_client(-1);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceChemical()) return exit_client(-1);

write_line(f, cp, nx, delta_years, next_output);
}

// Never gets here.
return 0;

}

85



86



Heat Transfer

A ChemPlugin instance can trace how its temperature varies over the course of a
simulation by keeping track of the net accumulation or loss of heat energy during the
time marching procedure. The calculation accounts for the transfer of thermal energy
across links by advecting fluids and by heat conduction, as well as the effects of any
internal heat sources or sinks the client may have set.

To trace heat transfer over the course of a simulation, the client program sets the
flow rate across each link using the “FlowRate()” member function. If heat conduction
is to be considered, the client further uses the “HeatTrans()” member function to set
thermal transmissivity across each link; the thermal transmissivity is described below.
Then, at each time step within the time marching loop, the client calls member function
“AdvanceHeatTransport()” to trigger the temperature change calculation.

A client may, as an alternative, prescribe an instance’s temperature evolution
explicitly. Temperature at an instance can be set to hold steady over the simulation,
or to slide linearly from an initial to a final value. Or, the client program can directly
update temperature at each step in the time marching loop, using values it determines
independently.

12.1 Initial temperature
A client program uses the “Config()” member function to set an instance’s initial
temperature. For example, the statement

cp.Config("temperature = 25 C");

or

cp.Config("T = 298 K");

prescribes room temperature as the initial state for ChemPlugin instance “cp”.
The client can further use the “Config()” member function to specify that the instance

hold steady

cp.Config("temperature = 60 C isothermal");

87



ChemPlugin User’s Guide

at a certain temperature, using the “isothermal” keyword, or to slide

cp.Config("T initial = 25 C, final = 60 C");

from one temperature to another over the course of the simulation, using the “initial”
and “final” keywords.

To trace a polythermal simulation in which conduction and advection among linked
instances transports heat energy into and out of an instance, you specify the instance’s
initial temperature as above, and use the “span” configuration command to prescribe
a temperature range for the calculation. The instance will load only chemical species
whose stabilities are known across the prescribed range, and “AdvanceHeatTransport()”
will report a failure condition if the updated temperature deviates outside the range.

As an example, the commands

cp.Config("T = 25 C; span 25 C to 100 C");

initiatestheinstanceat25°Candsetsanallowedtemperaturerangeupto100°C.Aqueous
species, minerals, and so on for which log Ks in the thermo dataset do not bracket
the temperatures will not be considered. As well, if a call to “AdvanceHeatTransport()”
drives temperature more than a few degrees below 25°C or above 100°C, the function
will report failure.

12.2 Temperature calculation
When a client program calls member function “AdvanceHeatTransport()” within a time
marching loop, the ChemPlugin instance evaluates the change in temperature over
the time step due to advective transport, heat conduction, and internal heat sources.

Specifically, the function enters into the heat transfer calculation when, at the
instance in question, each of the following conditions are met:

The client has not set the isothermal option, using the “isothermal” keyword of
the “temperature” configuration command.

The client has not specified a sliding temperature path with the “initial” and “final”
keywords of the “temperature” command.

Temperature at the instance differs from that at any instance linked to it, or a
heat source has been specified, or both.

If any of the conditions are not met, “AdvanceHeatTransport()” returns with temperature
unaltered, or adjusted according to the sliding temperature feature.

88



Heat Transfer

12.2.1 Advective transfer
If Q is the flow rate in m3 s�1 across a link from one ChemPlugin instance to another,
the rate J o

T of advective heat transfer between the instances is given by

J o
T D �wCwQT (12.1)

in units of J s�1. Here, �w is the fluid density in kg m�3, Cw is fluid heat capacity in J
kg�1 K�1, and T is temperature in K.

A client program uses the “FlowRate()” member function to set the flow rate Q

across a link, as described in previous chapters of this User’s Guide. Once Q is
specified, the instance computes the effects of advective transport whenever the client
program calls member function “AdvanceHeatTransport()”, assuming the conditions
listed above are met.

12.2.2 Conductive transfer
Fourier’s law gives the conductive heat flux J 1

T in J s�1 across an arbitrary plane as

J 1
T D �AKT

dT

dx
(12.2)

In this equation, A is cross-sectional area, in m2; KT is thermal conductivity, in W
m�1 K�1 (or, equivalently, J m�1 s�1 K�1, since 1 W = 1 J s�1); and dT=dx is the
temperature gradient across the plane, in K m�1.

ChemPlugin calculates J 1
T according to the approximate equation

J 1
T � ��T

�
T j
� T linked� (12.3)

where �T is the thermal transmissivity in units of W K�1, and T j and T linked are
temperatures at the originating and linked instances, respectively, in K.

Calculation of the thermal transmissivity �T closely parallels determination of the
transmissivities � for mass transport, as described in the Diffusion and Dispersion
chapter. Where the ChemPlugin instances represent equally-sized prisms of equivalent
thermal conductivities, the thermal transmissivity is given simply as

�T D
AKT

�x
(12.4)

For the case of equal instance sizes but heterogeneous thermal conductivity, the
equation takes the form

�T D

�
2A

�x

�
K

j
TK

linked
T

K
j
T CK

linked
T

(12.5)

89



ChemPlugin User’s Guide

where Kj
T and K linked

T are conductivity at the originating and linked instances. Finally,
the thermal transmissivity is given

�T D

2
�

AKT

�x

�j �
AKT

�x

�linked

�
AKT

�x

�j

C

�
AKT

�x

�linked (12.6)

for the general case of arbitrary geometry and heterogeneous thermal conductivity.

12.2.3 Heat sources
The client can set within any ChemPlugin instance a heat source or sink, using the
“heat_source” configuration command. For example:

cp.Config("heat_source = 5e-6 W/m3");

The source is expressed as a rate of heat supply per unit bulk volume of the instance.
Setting a positive value creates a source, whereas a negative value serves as a sink.

12.2.4 Stability
In tracing heat transfer, as was the case for mass transport, the size of the time steps
that can be taken during the simulation procedure are limited by the need to maintain
numerical stability. Following the logic in the previous chapter, the equation

�t D Vf

.0@ X
`WQ`>0

Q` C
1

Cb

X
`

�T`

1A (12.7)

gives the largest time step at which a ChemPlugin instance honors the stability
constraints on tracing heat conduction and advection. Here, Q` are the flow rates
across each of the instance’s links `, in m3 s�1; Cb is the instance’s bulk heat capacity,
in J m�3 K�1; and �T`

are the links’ thermal transmissivities, in W K�1.

12.2.5 Time marching loop
Member function “AdvanceHeatTransport()” is commonly called within the time marching
loop

// Time marching loop.
while (true) {

double deltat = 1e99;
for (int i=0; i<nx; i++)

deltat = std::min(deltat, cp[i].ReportTimeStep());
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTimeStep(deltat)) return -1;
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTransport()) return -1;

90



Heat Transfer

for (int i=0; i<nx; i++)
if (cp[i].AdvanceHeatTransport()) return -1;

for (int i=0; i<nx; i++)
if (cp[i].AdvanceChemical()) return -1;

}

after advancing the mass transport equations, but before evaluating the chemical
equations.

12.3 Externally prescribed temperature
A notable option for tracing polythermal simulations is for the client program to prescribe
how the temperature of each ChemPlugin instance varies, according to its own logic.
To do so, once an instance has been initialized, a client program makes use of member
function “SlideTemperature()” to adjust the instance’s temperature.

Suppose within a client program a function

double my_temperature(int i) { . . . };

is coded to return temperature for ChemPlugin instance “i” at any point in a simulation.
In this case, the time marching loop above could be cast as:

// Time marching loop.
while (true) {

double deltat = 1e99;
for (int i=0; i<nx; i++)

deltat = std::min(deltat, cp[i].ReportTimeStep());
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTimeStep(deltat)) return -1;
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTransport()) return -1;
for (int i=0; i<nx; i++)

if (cp[i].SlideTemperature(my_temperature(i))) return -1;
for (int i=0; i<nx; i++)

if (cp[i].AdvanceChemical()) return -1;
}

Here, in the second to last loop, where we had previously made a call to member function
“AdvanceHeatTransport()”, we instead call “SlideTemperature()” to set temperature
directly.

12.4 Model of heat conduction
In light of the direct analog between Fourier’s law of heat conduction and Fick’s law
of diffusion, our model of heat conduction is quite similar to the diffusion model we
developed previously, in the Diffusion and Dispersion chapter.

91



ChemPlugin User’s Guide

Here, we will emphasize the differences between the two client programs. The full
C++ code is listed in the final section of this chapter.

12.4.1 Simulation parameters
There are two primary differences between the simulation parameters for the diffusion
and heat conduction models. First, in the heat conduction model, the domain is 100 m
long, rather than 100 cm.

// Simulation parameters.
int nx = 100; // number of instances along x
double length = 100; // m
double deltax = length / nx; // m
double deltay = 1.0, deltaz = 1.0; // m

The difference in domain length reflects the fact that in a given length of time, heat is
conducted through rock farther than solute diffuses.

Second, the transmissivity variable “trans” represents the thermal rather than mass
transmissivity. As such, it is defined in terms of the thermal conductivity “tcon”

double tcond = 2.0; // W/m/K
double trans = deltay * deltaz * tcond / deltax; // W/K

rather than a diffusion coefficent.

12.4.2 Configuring and initializing instances
In the diffusion model, we set solute concentration on the left half of the domain larger
than on the right side. In the heat conduction model, in contrast, we set temperature
to the left higher than to the right. The code is:

// Configure and initialize the instances.
ChemPlugin *cp = new ChemPlugin[nx];
cp[0].Console("stdout");
cp[0].Config("pluses = banner");

std::string cmd = "span 20 C to 100 C; "
"volume = " + std::to_string(deltax * deltay * deltaz) + " m3; "
"porosity = " + std::to_string(porosity) + "; "
"time end = " + std::to_string(time_end) + " years; "
"Na+ = 0.001 mmol/kg; Cl- = 0.001 mmol/kg";

for (int i=0; i<nx; i++) {
cp[i].Config(cmd);
if (i < nx/2)

cp[i].Config("T = 100 C");
else

cp[i].Config("T = 20 C");

92



Heat Transfer

if (cp[i].Initialize()) {
std::cout << "Instance " << i << " failed to initialize" << std::endl;
return exit_client(-1);

}
}

12.4.3 Linking instances
In linking the ChemPlugin instances that make up the domain, the heat conduction
model differs from the diffusion model in that we use the “HeatTrans()” member function
to set thermal transmissivity:

// Link the instances.
for (int i=1; i<nx; i++) {

CpiLink link = cp[i].Link(cp[i-1]);
link.HeatTrans(trans, "W/K");

}

In the diffusion model, we instead specified the mass transmissivity with the
“Transmissivity()” member function.

12.4.4 Time marching loop
The time marching loop in the heat conduction example includes a call to member
function “AdvanceHeatTransport()” for each ChemPlugin instance:

// Time marching loop.
while (true) {

double deltat = 1e99;
for (int i=0; i<nx; i++)

deltat = std::min(deltat, cp[i].ReportTimeStep());
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTimeStep(deltat)) return exit_client(0);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceHeatTransport()) return exit_client(-1);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceChemical()) return exit_client(-1);

write_line(f, cp, nx, delta_years, next_output);
}

In the diffusion model, we instead called member function “AdvanceTransport()” to
evaluate the equations describing mass transport, rather than heat transport.

93



ChemPlugin User’s Guide

12.4.5 Running the client
Running the heat conduction model produces a file “HeatConduction.txt” containing
temperature profiles across the domain at discrete points in time. Plotting the results
for 5 years and 15 years gives:

20

40

60

80

100

0 20 40 60 80 100

Posi�on (m)

Temperature

(°C)

15 years

t = 0
5 years

The circles in the diagram correspond to the analytic solution to the problem at t =
15 years, from Carslaw and Jaeger’s 1959 textbook.

12.5 Model of advective heat transfer
In this section, we develop a model of the simultaneous advection and conduction of
heat. The model closely parallels the model of advective mass transport presented in
the previous chapter, Advection-Dispersion Model. As such, we will limit our discussion
to differences between the two models; the full source code for our new model is
listed in the final section of this chapter.

12.5.1 Simulation parameters
Just as in the heat conduction model above, the simulation parameters differ in that
here we set a thermal transmissivity in terms of the thermal conductivity:

double tcond = 2.0; // W/m/K
double trans = deltay * deltaz * tcond / deltax; // W/K

In the mass transport model from the previous chapter, we set instead a mass
transmissivity representing the processes dispersion and diffusion.

12.5.2 Configuring and initializing instances
For the current model, we set temperature at the inlet to 100 °C, and within the initial
domain to 20 °C. The fluid composition everywhere is the same.

ChemPlugin cp_inlet;
cp_inlet.Config("T = 100 C; Na+ = 0.001 mmol/kg; Cl- = 0.001 mmol/kg");
if (cp_inlet.Initialize()) {

94



Heat Transfer

std::cout << "Inlet failed to initialize" << std::endl;
return exit_client(-1);

}

ChemPlugin *cp = new ChemPlugin[nx];
cp[0].Console("stdout");
cp[0].Config("pluses = banner");

std::string cmd = "T = 20 C; span 20 C to 100 C; volume = " +
std::to_string(deltax * deltay * deltaz) + " m3; "
"porosity = " + std::to_string(porosity) + "; "
"time end = " + std::to_string(time_end) + " years; "
"Na+ = 0.001 mmol/kg; Cl- = 0.001 mmol/kg";

for (int i=0; i<nx; i++) {
cp[i].Config(cmd);
if (cp[i].Initialize()) {

std::cout << "Instance " << i << " failed to initialize" << std::endl;
return exit_client(-1);

}
}

12.5.3 Linking instances
In linking the instances, we use member function “HeatTrans()” to define conduction
among the instances.

CpiLink link = cp[0].Link(cp_inlet);
link.HeatTrans(trans, "W/K");
link.FlowRate(flow, "m3/s");

for (int i=1; i<nx; i++) {
link = cp[i].Link(cp[i-1]);
link.HeatTrans(trans, "W/K");
link.FlowRate(flow, "m3/s");

}

link = cp[nx-1].Link();
link.FlowRate(-flow, "m3/s");

We are not considering mass transport, so we do not set mass transmissivities, as
we did in the previous chapter’s model.

12.5.4 Time marching loop
The time marching loop is the same as coded in the heat conduction model earlier in
this chapter.

95



ChemPlugin User’s Guide

12.5.5 Running the client
Running the model generates an output file “HeatTransfer.txt” containing temperature
profiles across the domain at discrete points in time. The plot below shows temperature
predicted by the model at two year increments

20

40

60

80

100

0 20 40 60 80 100

Posi�on (m)

Temperature

(°C)

10 years

t = 0

6 yr

4 yr

2 yr

8 yr

flow

calculated assuming a fluid velocity vx of 20 m yr�1. The circles in the diagram
correspond to the analytic solution at t = 8 years. The small discrepancies between the
numerical and analytic results reflect in large part the fact that ChemPlugin accounts for
how fluid properties such as density vary with temperature, whereas the closed-form
mathematical solution cannot.

12.6 C++ source code
The C++ source codes for the two example client programs in this chapter are given
in this section.

12.6.1 Heat conduction code
The source code for the heat conduction example can be downloaded from the
ChemPlugin.GWB.com website as file “HeatConduction1.cpp”, and is listed below.

#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include "ChemPlugin.h"

int exit_client(int status)
{

std::cin.get();
return status;

}

96



Heat Transfer

void write_line(std::ofstream& f, ChemPlugin *cp, int nx,
double gap, double& then)

{
double now = cp[0].Report1("Time", "years");
if ((then - now) < gap / 1e4) {

f << now;
for (int i=0; i<nx; i++)

f << "\t" << cp[i].Report1("temperature", "C");
f << std::endl;
then += gap;

}
}

int main(int argc, char** argv) {
std::cout << "Model heat conduction in one dimension"

<< std::endl << std::endl;

// Simulation parameters.
int nx = 100; // number of instances along x
double length = 100; // m
double deltax = length / nx; // m
double deltay = 1.0, deltaz = 1.0; // m
double porosity = 0.25; // volume fraction

double tcond = 2.0; // W/m/K
double trans = deltay * deltaz * tcond / deltax; // W/K

double time_end = 15.0; // years
double delta_years = time_end / 3; // years
double next_output = 0.0; // years

// Open output file and write instance positions on the first line.
std::ofstream f;
f.open("HeatConduction.txt");
if (f.is_open()) {

f << "years";
for (int i=0; i<nx; i++)

f << "\t" << (i+0.5) * deltax;
f << std::endl;

}
else {

std::cout << "Failed to open output file" << std::endl;
return exit_client(-1);

}

// Configure and initialize the instances.
ChemPlugin *cp = new ChemPlugin[nx];
cp[0].Console("stdout");

97



ChemPlugin User’s Guide

cp[0].Config("pluses = banner");

std::string cmd = "span 20 C to 100 C; "
"volume = " + std::to_string(deltax * deltay * deltaz) + " m3; "
"porosity = " + std::to_string(porosity) + "; "
"time end = " + std::to_string(time_end) + " years; "
"Na+ = 0.001 mmol/kg; Cl- = 0.001 mmol/kg";

for (int i=0; i<nx; i++) {
cp[i].Config(cmd);
if (i < nx/2)

cp[i].Config("T = 100 C");
else

cp[i].Config("T = 20 C");

if (cp[i].Initialize()) {
std::cout << "Instance " << i << " failed to initialize" << std::endl;
return exit_client(-1);

}
}
write_line(f, cp, nx, delta_years, next_output);

// Link the instances.
for (int i=1; i<nx; i++) {

CpiLink link = cp[i].Link(cp[i-1]);
link.HeatTrans(trans, "W/K");

}

// Time marching loop.
while (true) {

double deltat = 1e99;
for (int i=0; i<nx; i++)

deltat = std::min(deltat, cp[i].ReportTimeStep());
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTimeStep(deltat)) return exit_client(0);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceHeatTransport()) return exit_client(-1);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceChemical()) return exit_client(-1);

write_line(f, cp, nx, delta_years, next_output);
}

// Never gets here.
return 0;

}

98



Heat Transfer

12.6.2 Advective heat transfer code
The source code for the heat advection example can be downloaded from the
ChemPlugin.GWB.com website as file “HeatTransfer1.cpp”, and is listed below.

Note: This code is also available in FORTRAN and Python from ChemPlugin.
GWB.com.

#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include "ChemPlugin.h"

int exit_client(int status)
{

std::cin.get();
return status;

}

void write_line(std::ofstream& f, ChemPlugin *cp, int nx,
double gap, double& then)

{
double now = cp[0].Report1("Time", "years");
if ((then - now) < gap / 1e4) {

f << now;
for (int i=0; i<nx; i++)

f << "\t" << cp[i].Report1("temperature", "C");
f << std::endl;
then += gap;

}
}

int main(int argc, char** argv) {
std::cout << "Model heat transfer in one dimension"

<< std::endl << std::endl;

// Simulation parameters.
int nx = 400; // number of instances along x
double length = 100; // m
double deltax = length / nx; // m
double deltay = 1.0, deltaz = 1.0; // m
double porosity = 0.25; // volume fraction

double tcond = 2.0; // W/m/K
double trans = deltay * deltaz * tcond / deltax; // W/K

double veloc_in; // m/yr
std::cout << "Please enter fluid velocity in m/yr: ";
std::cin >> veloc_in;

99



ChemPlugin User’s Guide

std::cin.ignore();

double velocity = veloc_in / 31557600.; // m/s
double flow = deltay * deltaz * porosity * velocity; // m3/s

double time_end = 10.0; // years
double delta_years = time_end / 5; // years
double next_output = 0.0; // years

// Open output file and write instance positions on the first line.
std::ofstream f;
f.open("HeatTransfer.txt");
if (f.is_open()) {

f << "years";
for (int i=0; i<nx; i++)

f << "\t" << (i+0.5) * deltax;
f << std::endl;

}
else {

std::cout << "Failed to open output file" << std::endl;
return exit_client(-1);

}

// Configure and initialize the inlet and interior instances.
ChemPlugin cp_inlet;
cp_inlet.Config("T = 100 C; Na+ = 0.001 mmol/kg; Cl- = 0.001 mmol/kg");
if (cp_inlet.Initialize()) {

std::cout << "Inlet failed to initialize" << std::endl;
return exit_client(-1);

}

ChemPlugin *cp = new ChemPlugin[nx];
cp[0].Console("stdout");
cp[0].Config("pluses = banner");

std::string cmd = "T = 20 C; span 20 C to 100 C; volume = " +
std::to_string(deltax * deltay * deltaz) + " m3; "
"porosity = " + std::to_string(porosity) + "; "
"time end = " + std::to_string(time_end) + " years; "
"Na+ = 0.001 mmol/kg; Cl- = 0.001 mmol/kg";

for (int i=0; i<nx; i++) {
cp[i].Config(cmd);
if (cp[i].Initialize()) {

std::cout << "Instance " << i << " failed to initialize" << std::endl;
return exit_client(-1);

}
}

100



Heat Transfer

write_line(f, cp, nx, delta_years, next_output);

// Link the instances.
CpiLink link = cp[0].Link(cp_inlet);
link.HeatTrans(trans, "W/K");
link.FlowRate(flow, "m3/s");

for (int i=1; i<nx; i++) {
link = cp[i].Link(cp[i-1]);
link.HeatTrans(trans, "W/K");
link.FlowRate(flow, "m3/s");

}

link = cp[nx-1].Link();
link.FlowRate(-flow, "m3/s");

// Time marching loop.
while (true) {

double deltat = 1e99;
for (int i=0; i<nx; i++)

deltat = std::min(deltat, cp[i].ReportTimeStep());
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTimeStep(deltat)) return exit_client(0);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceHeatTransport()) return exit_client(-1);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceChemical()) return exit_client(-1);

write_line(f, cp, nx, delta_years, next_output);
}

// Never gets here.
return 0;

}

101



102



Reactive Transport Model

In this final chapter, we culminate our modeling exercises by creating a one-dimensional
modelofpolythermal reactive transportoutofChemPlugin instances.Ourmodel issimilar
to the client program “Advection1.cpp” that we wrote in the Advection-Dispersion Model
chapter. We set a domain of the same medium geometry as in that code, and we
again query the user for the fluid velocity.

Unlike “Advection1.cpp”, however, we ask the user to point to an input file of
configuration commands. The commands constrain the chemistry of the inlet fluid, as
well as the domain’s initial chemistry. The input file has the structure:

scope inlet
... configuration commands applied to the inlet ...

scope initial
... configuration commands applied to the initial domain ...

Configuration commands following a “scope inlet” statement apply to the inlet fluid,
whereas those following “scope initial” are used to constrain the chemistry of the
domain.

13.1 Program structure
The structure of the client program is similar to our previous clients:

#include <iostream>
#include <fstream>
#include <string>
#include "ChemPlugin.h"

int exit_client(int status)
{

std::cin.get();
return status;

}

void open_input(std::ifstream& input, int argc, char** argv) {
... function to open input file goes here ...

103



ChemPlugin User’s Guide

}

void write_results(ChemPlugin *cp, int nx, double gap, double& then)
{

... function to write modeling results goes here ...
}

int main(int argc, char** argv) {
std::cout << "Model reactive transport in one dimension"

<< std::endl << std::endl;

// Simulation parameters.
... simulation parameters are set out here ...

// Create the inlet and interior instances.
... set out instances representing inlet and domain here ...

// Query user for input file and configure inlet, initial domain.
... read the input file and configure the instances here ...

// Initialize the inlet and interior instances; write out initial conditions.
... instances are initialized here ...

// Query user for velocity; calculate flow rate and transmissivities.
... read in the velocity and calculate transport parameters here ...

// Link the instances.
... links among the instances are created and defined here ...

// Time marching loop.
... time marching loop goes here ...

// Never gets here.
return 0;

}

Function “open_input()” is the same as previous clients; the remainder of the code is
explained below.

13.2 Output function
The client’s output strategy is to write blocks of the calculation results in “print format”
to a file “RTM.txt”. Initially, the client writes blocks describing the inlet fluid and the
initial state of each of the ChemPlugin instances comprising the domain. Then, every
so often over the course of the time marching, the client scans across the domain,
writing a block of output for each of the ChemPlugin instances.

104



Reactive Transport Model

Function “write_results()” writes out the calculation results for each instance in the
domain, once every “gap” years:

void write_results(ChemPlugin *cp, int nx, double gap, double& then)
{

double now = cp[0].Report1("Time", "years");
if ((then - now) < gap / 1e4) {

for (int i=0; i<nx; i++) {
std::string label = "Instance " + std::to_string(i);
cp[i].PrintOutput("RTM.txt", label);

}
then += gap;

}
}

The function is similar to “write_line()” in previous examples, except it employs the
“PrintOutput()” member function to trigger output events, rather than writing a specific
value, such as the pH.

13.3 Simulation parameters
The simulation parameters define a domain 100 m � 1 m � 1 m, composed of 100
ChemPlugin instances of 1 m3 each. Rather than setting porosity explicitly, we will
query the first ChemPlugin instance in the domain for the value, once it is configured
and initialized.

// Simulation parameters.
int nx = 100; // number of instances along x
double length = 100; // m
double deltax = length / nx; // m
double deltay = 1.0, deltaz = 1.0; // m

double time_end = 10.0; // years
double delta_years = time_end / 5; // years
double next_output = 0.0; // years

The simulation is set to span 10 years, writing output at 0 years, and then every 2
years.

13.4 Create instances
To create the ChemPlugin instances that will comprise the model, we, as in previous
models, instantiate an instance “cp_inlet” to represent the inlet fluid, and “nx” instances
to make up the interior of the domain.

105



ChemPlugin User’s Guide

// Create the inlet and interior instances.
ChemPlugin cp_inlet;
ChemPlugin *cp = new ChemPlugin[nx];
cp_inlet.Console("stdout");
cp[0].Console("stdout");
cp[0].Config("pluses = banner");

std::string cmd = "volume = " + std::to_string(deltax * deltay * deltaz) +
" m3; time end = " + std::to_string(time_end) + " years";

for (int i=0; i<nx; i++)
cp[i].Config(cmd);

For each of the interior instances, we pass a set of configuration commands that set
the instance’s bulk volume and the end time of the simulation.

13.5 Configure instances
Next, we configure the chemical state of each ChemPlugin instance. The strategy is
to call “open_input()”, which queries the user for the name of an input file and opens
an input stream from that file.

// Query user for input file and configure inlet, initial domain.
std::ifstream input;
open_input(input, argc, argv);
int scope = 0;
while (!input.eof()) {

std::string line;
std::getline(input, line);
if (line == "go")

break;
else if (line == "scope inlet")

scope = 1;
else if (line == "scope initial")

scope = 2;
else if (scope == 1)

cp_inlet.Config(line);
else if (scope == 2)

for (int i=0; i<nx; i++)
cp[i].Config(line);

}

The client scans through the input file, sending lines following an occurrence of “scope
inlet” to configure “cp_inlet”, and lines after “scope initial” to each of the interior
instances.

106



Reactive Transport Model

13.6 Initialize instances
Once the ChemPlugin instances are configured, the client initializes them with member
function “Initialize()”, and writes the boundary and initial conditions to output file
“RTM.txt”.

if (cp_inlet.Initialize()) {
std::cout << "Inlet failed to initialize" << std::endl;
return exit_client(-1);

}
cp_inlet.PrintOutput("RTM.txt", "Inlet fluid");

for (int i=0; i<nx; i++) {
if (cp[i].Initialize()) {

std::cout << "Instance " << i << " failed to initialize" << std::endl;
return exit_client(-1);

}
}
write_results(cp, nx, delta_years, next_output);

13.7 Set transport parameters
To describe mass transport and heat transfer among the instances, the client calculates
the flow rate Q, in m3 s�1; the mass transmissivity � , in the same units; and the
thermal transmissivity �T , in W/K.

// Query user for velocity; calculate flow rate and transmissivities.
double veloc_in; // m/yr
std::cout << "Please enter fluid velocity in m/yr: ";
std::cin >> veloc_in;
std::cin.ignore();
std::cout << std::endl;

double velocity = veloc_in / 31557600.; // m/s
double porosity = cp[0].Report1("porosity"); // volume fraction
double flow = deltay * deltaz * porosity * velocity; // m3/s

double diffcoef = 1e-10; // m2/s
double dispersivity = 1.0; // m
double dispcoef = velocity * dispersivity + diffcoef; // m2/s
double trans = deltay * deltaz * porosity * dispcoef / deltax; // m3/s

double tcond = 2.0; // W/m/K
double ttrans = deltay * deltaz * tcond / deltax; // W/K

The first two values depend on the flow velocity vx, which the client prompts the user
to provide, and the porosity n, determined by querying the first instance in the domain.

107



ChemPlugin User’s Guide

13.8 Link the instances
The code for linking the instances into a flow domain

// Link the instances.
CpiLink link = cp[0].Link(cp_inlet);
link.Transmissivity(trans, "m3/s");
link.HeatTrans(ttrans, "W/K");
link.FlowRate(flow, "m3/s");

for (int i=1; i<nx; i++) {
link = cp[i].Link(cp[i-1]);
link.Transmissivity(trans, "m3/s");
link.HeatTrans(ttrans, "W/K");
link.FlowRate(flow, "m3/s");

}

link = cp[nx-1].Link();
link.FlowRate(-flow, "m3/s");

parallels the coding in “Advection1.cpp” and “HeatTransfer1.cpp”. In this client, however,
we specify transmissivities for both mass transport and heat transfer.

13.9 Time marching loop
The time marching loop

// Time marching loop.
while (true) {

double deltat = 1e99;
for (int i=0; i<nx; i++)

deltat = std::min(deltat, cp[i].ReportTimeStep());
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTimeStep(deltat)) return exit_client(0);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTransport()) return exit_client(-1);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceHeatTransport()) return exit_client(-1);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceChemical()) return exit_client(-1);

write_results(cp, nx, delta_years, next_output);
}

sets out the sequential computation of mass transport, heat transfer, and chemical
reaction.

108



Reactive Transport Model

13.10 Running the model
As an example of running the reactive transport model we’ve constructed, we read in
a file “Infilter.cpi”:

scope inlet
SiO2(aq) = 1 mg/kg

scope initial
swap Quartz for SiO2(aq)
Quartz = 70 vol%
kinetic Quartz rate_con = 4.2e-18 surface = 1000

The file describes the reaction of dilute water infiltering into a quartz aquifer, where
the reaction proceeds according to a kinetic rate law. We then specify a flow velocity
of 100 m yr�1.

The plot below shows the concentration of dissolved silica as a function of position
along the aquifer, at the end of the simulation.

0

.02

.04

.06

.08

.1

0 20 40 60 80 100

Posi�on (m)

 SiO₂(aq)

mmol kg–1

The circles represent the result of modeling the same scenario with program X1t.

13.11 C++ source code
The full C++ code for the client program is available on the ChemPlugin.GWB.com
website as file “RTM1.cpp”, and is listed below.

Note: This code is also available in FORTRAN and Python from ChemPlugin.
GWB.com.

#include <iostream>
#include <fstream>

109



ChemPlugin User’s Guide

#include <string>
#include "ChemPlugin.h"

int exit_client(int status)
{

std::cin.get();
return status;

}

void open_input(std::ifstream &input, int argc, char** argv) {
while (!input.is_open()) {

std::string filename;
if (argc < 2) {

std::cout << "Enter RTM input script: ";
std::cin >> filename;
std::cin.ignore();

}
else {

filename = argv[1];
}

input.open(filename);

if (!input.is_open())
std::cerr << "The input file does not exist" << std::endl;

}
}

void write_results(ChemPlugin *cp, int nx, double gap, double& then)
{

double now = cp[0].Report1("Time", "years");
if ((then - now) < gap / 1e4) {

for (int i=0; i<nx; i++) {
std::string label = "Instance " + std::to_string(i);
cp[i].PrintOutput("RTM.txt", label);

}
then += gap;

}
}

int main(int argc, char** argv) {
std::cout << "Model reactive transport in one dimension"

<< std::endl << std::endl;

// Simulation parameters.
int nx = 100; // number of instances along x
double length = 100; // m
double deltax = length / nx; // m

110



Reactive Transport Model

double deltay = 1.0, deltaz = 1.0; // m

double time_end = 10.0; // years
double delta_years = time_end / 5; // years
double next_output = 0.0; // years

// Create the inlet and interior instances.
ChemPlugin cp_inlet;
ChemPlugin *cp = new ChemPlugin[nx];
cp_inlet.Console("stdout");
cp[0].Console("stdout");
cp[0].Config("pluses = banner");

std::string cmd = "volume = " + std::to_string(deltax * deltay * deltaz) +
" m3; time end = " + std::to_string(time_end) + " years";

for (int i=0; i<nx; i++)
cp[i].Config(cmd);

// Query user for input file and configure inlet, initial domain.
std::ifstream input;
open_input(input, argc, argv);
int scope = 0;
while (!input.eof()) {

std::string line;
std::getline(input, line);
if (line == "go")

break;
else if (line == "scope inlet")

scope = 1;
else if (line == "scope initial")

scope = 2;
else if (scope == 1)

cp_inlet.Config(line);
else if (scope == 2)

for (int i=0; i<nx; i++)
cp[i].Config(line);

}

// Initialize the inlet and interior instances; write out initial conditions.
if (cp_inlet.Initialize()) {

std::cout << "Inlet failed to initialize" << std::endl;
return exit_client(-1);

}
cp_inlet.PrintOutput("RTM.txt", "Inlet fluid");

for (int i=0; i<nx; i++) {
if (cp[i].Initialize()) {

std::cout << "Instance " << i << " failed to initialize" << std::endl;

111



ChemPlugin User’s Guide

return exit_client(-1);
}

}
write_results(cp, nx, delta_years, next_output);

// Query user for velocity; calculate flow rate and transmissivities.
double veloc_in; // m/yr
std::cout << "Please enter fluid velocity in m/yr: ";
std::cin >> veloc_in;
std::cin.ignore();
std::cout << std::endl;

double velocity = veloc_in / 31557600.; // m/s
double porosity = cp[0].Report1("porosity"); // volume fraction
double flow = deltay * deltaz * porosity * velocity; // m3/s

double diffcoef = 1e-10; // m2/s
double dispersivity = 1.0; // m
double dispcoef = velocity * dispersivity + diffcoef; // m2/s
double trans = deltay * deltaz * porosity * dispcoef / deltax; // m3/s

double tcond = 2.0; // W/m/K
double ttrans = deltay * deltaz * tcond / deltax; // W/K

// Link the instances.
CpiLink link = cp[0].Link(cp_inlet);
link.Transmissivity(trans, "m3/s");
link.HeatTrans(ttrans, "W/K");
link.FlowRate(flow, "m3/s");

for (int i=1; i<nx; i++) {
link = cp[i].Link(cp[i-1]);
link.Transmissivity(trans, "m3/s");
link.HeatTrans(ttrans, "W/K");
link.FlowRate(flow, "m3/s");

}

link = cp[nx-1].Link();
link.FlowRate(-flow, "m3/s");

// Time marching loop.
while (true) {

double deltat = 1e99;
for (int i=0; i<nx; i++)

deltat = std::min(deltat, cp[i].ReportTimeStep());
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTimeStep(deltat)) return exit_client(0);
for (int i=0; i<nx; i++)

112



Reactive Transport Model

if (cp[i].AdvanceTransport()) return exit_client(-1);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceHeatTransport()) return exit_client(-1);
for (int i=0; i<nx; i++)

if (cp[i].AdvanceChemical()) return exit_client(-1);

write_results(cp, nx, delta_years, next_output);
}

// Never gets here.
return 0;

}

113



114



Multithreading

We consider in this chapter how to multithread a client program, so the ChemPlugin
objects it spawns work in parallel. A multithreaded client, instead of running on a single
computing core, executes across all the cores present in a multicore processor, such
as those implemented in modern laptops, personal computers, and workstations.

Making use of a number of cores at once, a multithreaded client can run considerably
more quickly than a monothreaded version, without taking up appreciably more memory.
You can multithread ChemPlugin clients in C++ and Fortran.

In this chapter, we use the OpenMP application programming interface (API) to
multithread the “RTM1.cpp” client program that we developed in the previous chapter,
Reactive Transport Model. We will save the multithreaded version of the code we
develop under the name “RTM2.cpp”.

In contrast to parallelizing a client by multithreading, you can run it in parallel on a
computing cluster. In this case, a number of copies of the client run at the same time
across a group of tightly networked computers. The copies work together by sharing
work among themselves, as described in the next chapter, Cluster Computing.

You can further blend the two methods by running a multithreaded client across
the computers in a cluster; this hybrid technique is described in the following chapter,
Hybrid Parallelization.

14.1 Code changes
Multithreading the “RTM1.cpp” application requires relatively minor changes to the
original source code, as described below. Before reviewing these changes, you may
wish to visit a tutorial to introduce yourself to the fundamental concepts of OpenMP
programming.

14.1.1 Header files
We begin by appending

#include <omp.h>

to the system header lines at the top of the client program. File “omp.h” is the C++
header for OpenMP.

115



ChemPlugin User’s Guide

14.1.2 Number of instances
In “RTM1.cpp”, the statement

nx = 100;

sets the client to instantiate 100 ChemPlugin instances. This is, however, too few to
take good advantage of multithreading the client.

In general, creating a parallel region in a client program requires the system to
expend overhead. If there’s too little work to share, the client may spend as much
time administering the the parallel region as it gains from the work sharing. As such,
we’ll recast the statement above as

nx = 4000;

so as to create a larger number of ChemPlugin instances.

14.1.3 Instantiation
Instantiating a ChemPlugin instance involves a non-trivial amount of work. Each
instance, upon being created, lays out memory for itself, reads in a thermodynamic
dataset, and prepares itself to accept configuration commands. By multithreading the
instantiation step, you can significantly reduce the time required for a client to start up.

The original instantiation

ChemPlugin *cp = new ChemPlugin[nx];

is strictly serial—a single thread lays out one instance after another until “nx” instances
have been created.

One way to multithread the initialization is to cast “cp” as a vector of pointers to
ChemPlugin instances, instead of a vector of the instances themselves. In this way,
we can instantiate in parallel:

std::vector<ChemPlugin*> cp(nx);
#pragma omp parallel for

for (int i=0; i<nx; i++)
cp[i] = new ChemPlugin();

Here, the statements following the “#pragma” directive split creation of the ChemPlugin
instances across a work-sharing loop.

Each vector element “cp[i]” is a pointer to a ChemPlugin instance now, rather than
a reference to an instance itself. Hence, we need to change constructions like

cp[i].Config("pH = 5");

throughout “RTM1.cpp” to

116



Multithreading

cp[i]->Config("pH = 5");

Note the instances no longer occupy a contiguous block of memory.
If instantiating ChemPlugin instances in continguous memory is a programming

objective, we might instead use a concurrent vector class to store the instances.
The “concurrent_vector” object in “tbb.h”, a set of threaded building blocks for Intel
programming environments, serves this purpose:

#include <tbb\tbb.h>
#undef min

... some code ...

tbb::concurrent_vector<ChemPlugin> cp;
#pragma omp parallel for

for (int i=0; i<nx; i++)
cp.push_back( ChemPlugin() );

Here “ChemPlugin()” is a direct call to the object’s constructor function. As we see,
“concurrent_vector” behaves like the familiar C++ “vector” object, except that it is
thread-safe. #undef’ing “min” is a precaution to prevent a macro definition in “tbb.h”
from interfering with our use of the standard “std::min” function.

Since there is no standard implementation of a concurrent vector class across
operating systems, we work in this chapter with the first alternative, the vector of
pointers to the ChemPlugin instances.

14.1.4 Configuration
Where “RTM1.cpp” configures the ChemPlugin instances with calls to the “Config()”
member function, two loops over the instances can be parallelized

#pragma omp parallel for
for (int i=0; i<nx; i++)

cp[i]->Config(cmd);

... some code ...

else if (scope == 2) {
#pragma omp parallel for

for (int i=0; i<nx; i++)
cp[i]->Config(line);

}

by inserting “#pragma” directives, as shown above.

117



ChemPlugin User’s Guide

14.1.5 Initialization
The loop where client “RTM1.cpp” initializes the ChemPlugin instances

for (int i=0; i<nx; i++) {
if (cp[i].Initialize()) {

std::cout << "Instance " << i << " failed to initialize" << std::endl;
return exit_client(-1);

}
}

requires a little extra care to multithread, because work-sharing loops in OpenMP
cannot be broken within the parallel region.

To parallelize the loop, we use a reduction variable “nerror” to count the number of
times the loop encounters a condition that would cause it to break:

int nerror = 0;
#pragma omp parallel for reduction(+ : nerror)

for (int i=0; i<nx; i++) {
if (cp[i]->Initialize()) {

std::cout << "Instance " << i << " failed to initialize" << std::endl;
nerror++;

}
}
if (nerror) return exit_client(-1);

If “nerror” is non-zero after the loop completes, the client exits.

14.1.6 Linking
The loop over which client “RTM1.cpp” links the ChemPlugin instances

CpiLink link ...

... some code ...

for (int i=1; i<nx; i++) {
link = cp[i].Link(cp[i-1]);
link.Transmissivity(trans, "m3/s");
link.HeatTrans(ttrans, "W/K");
link.FlowRate(flow, "m3/s");

}

cannot work correctly as listed, because within the parallel region the various threads
would write to and read from “link” simultaneously.

Instead, “link” must be re-declared within the scope of the loop

118



Multithreading

CpiLink link ...

... some code ...

for (int i=1; i<nx; i++) {
CpiLink link = cp[i]->Link(cp[i-1]);
link.Transmissivity(trans, "m3/s");
link.HeatTrans(ttrans, "W/K");
link.FlowRate(flow, "m3/s");

}

Inside the parallel region, now, “link” is private to each thread.

14.1.7 Loop scheduling
OpenMP offers a variety of options for divvying up passes through a loop among the
available computing cores, a process known as scheduling. At its simplest, OpenMP
splits the passes into contiguous chunks, sending each chunk to run on one of the
cores. This strategy is known as static scheduling.

Take as an example a client considering an “nx” of 3200 ChemPlugin instances,
running on a computer with eight cores. In executing the loop

#pragma omp parallel for schedule(static)
for (int i=0; i<nx; i++)

cp[i]->Config(cmd);

OpenMP divides the instances into chunks of 400. Core zero will be responsible the
first 400, core one for the next 400, and so on. The qualifier “schedule(static)” may be
omitted, because static scheduling is the de facto default among OpenMP installations.

A static strategy works best for member functions that involve roughly the same
amount of work each time they are called. A dynamic scheduling strategy is generally
advantageous when calling “AdvanceChemical()”, however, because the work required
by that function varies from instance to instance, depending on how many iterations
are needed to converge to a solution.

In dynamic scheduling, an alternative strategy, OpenMP assigns successive passes
through the loop as computer cores become available. To call “AdvanceChemical()”
in a dynamically scheduled loop

#pragma omp parallel for schedule(dynamic)
for (int i=0; i<nx; i++)

cp[i]->AdvanceChemical();

you use the “schedule(dynamic)” qualifier in the compiler directive.
Scheduling the loop dynamically can significantly reduce latency, the state in which

some cores sit idle waiting for others to finish. In a static schedule, one of the chunks

119



ChemPlugin User’s Guide

might include a number of instances where “AdvanceChemical()” converges slowly,
such as in the vicinity of a reaction front. A dynamically scheduled loop, on the other
hand, is flexible in how it assigns passes to cores, so some cores may end up working
on a relatively few instances that converge slowly, whereas others take care of a
larger number of quickly-converging instances.

14.1.8 Time marching loop
Within the time marching loop, there are five loops over the ChemPlugin instances
that can be multithreaded:

// Time marching loop.
while (true) {

double deltat = 1e99;
#pragma omp parallel for reduction(min : deltat)

for (int i=0; i<nx; i++)
deltat = std::min(deltat, cp[i]->ReportTimeStep());

int nerror = 0;
#pragma omp parallel for reduction(+ : nerror)

for (int i=0; i<nx; i++)
if (cp[i]->AdvanceTimeStep(deltat)) nerror++;

if (nerror) return exit_client(0);

#pragma omp parallel for reduction(+ : nerror)
for (int i=0; i<nx; i++)

if (cp[i]->AdvanceTransport()) nerror++;
if (nerror) return exit_client(-1);

#pragma omp parallel for reduction(+ : nerror)
for (int i=0; i<nx; i++)

if (cp[i]->AdvanceHeatTransport()) nerror++;
if (nerror) return exit_client(-1);

#pragma omp parallel for reduction(+ : nerror) schedule(dynamic)
for (int i=0; i<nx; i++)

if (cp[i]->AdvanceChemical()) nerror++;
if (nerror) return exit_client(-1);

write_results(cp, nx, delta_years, next_output);
}

The first work-sharing loop requires reduction over “deltat”, whereas the remaining
loops reduce over “nerror”. Each loop is statically scheduled, except the last, for which
scheduling is dynamic.

120



Multithreading

14.2 Speedup
To test the extent to which multithreading the client program “RTM2.cpp” sped its
execution relative to the single-threaded version “RTM1.cpp”, we timed the solution of
three problems using varying numbers “nx” of ChemPlugin instances. We compiled
the clients into 64-bit apps and ran the tests on a Windows 8.1 computer with a
hyperthreaded quad core Intel Core i7 processor and 12 GB of memory. In each
case, we report speedup as the clock time required to solve the problem using the
single-threaded relative to the multithreaded client.

The three problems are:

Complexation: 7 chemical components; 1 kinetic equation describing an aqueous
complexation reaction.

Weathering: 8 chemical components; 3 kinetic equations describing mineral
dissolution.

Dual porosity: 6 chemical components; solute diffusion into and out of stagnant
zones.

The speedups observed on a quad core processor for the multithreaded client on
runs made using 4 000, 10 000, and 40 000 ChemPlugin instances are:

nx = 4 000 10 000 40 000
Complexation �3.65 �3.90 �4.08
Weathering �4.07 �4.04 �3.92
Dual porosity �3.22 �3.72 �4.02

The nominal maximum speedup on a quad core processor is �4. It is possible, as we
see in this table, to exceed this limit somewhat by hyperthreading—i.e., scheduling
two threads on each core.

14.3 C++ source code
The full C++ code for the client program is listed below; versions in C++ and Fortran
are available to download from the ChemPlugin.GWB.com website, respectively, as
files “RTM2.cpp” and “RTM2.f90”.

#include <iostream>
#include <fstream>
#include <string>
#include <omp.h>
#include <vector>
#undef min
#include "ChemPlugin.h"

int exit_client(int status)

121



ChemPlugin User’s Guide

{
std::cin.get();
return status;

}

void open_input(std::ifstream &input, int argc, char** argv) {
while (!input.is_open()) {

std::string filename;
if (argc < 2) {

std::cout << "Enter RTM input script: ";
std::cin >> filename;
std::cin.ignore();

}
else {

filename = argv[1];
}

input.open(filename);

if (!input.is_open())
std::cerr << "The input file does not exist" << std::endl;

}
}

void write_results(std::vector<ChemPlugin*>& cp, int nx, double gap, double& then)
{

double now = cp[0]->Report1("Time", "years");
if ((then - now) < gap / 1e4) {

for (int i=0; i<nx; i++) {
std::string label = "Instance " + std::to_string(i);
cp[i]->PrintOutput("RTM.txt", label);

}
then += gap;

}
}

int main(int argc, char** argv) {
std::cout << "Model reactive transport in one dimension"

<< std::endl << std::endl;

// Simulation parameters.
int nx = 1000; // number of instances along x
double length = 100; // m
double deltax = length / nx; // m
double deltay = 1.0, deltaz = 1.0; // m

double time_end = 10.0; // years
double delta_years = time_end / 5; // years

122



Multithreading

double next_output = 0.0; // years

// Create the inlet and interior instances.
ChemPlugin cp_inlet;

std::vector<ChemPlugin*> cp(nx);
#pragma omp parallel for

for (int i=0; i<nx; i++)
cp[i] = new ChemPlugin();

cp_inlet.Console("stdout");
cp[0]->Console("stdout");
cp[0]->Config("pluses = banner");

std::string cmd = "volume = " + std::to_string(deltax * deltay * deltaz) +
" m3; time end = " + std::to_string(time_end) + " years";

#pragma omp parallel for
for (int i=0; i<nx; i++)

cp[i]->Config(cmd);

// Query user for input file and configure inlet, initial domain.
std::ifstream input;
open_input(input, argc, argv);
int scope = 0;
while (!input.eof()) {

std::string line;
std::getline(input, line);
if (line == "go")

break;
else if (line == "scope inlet")

scope = 1;
else if (line == "scope initial")

scope = 2;
else if (scope == 1)

cp_inlet.Config(line);
else if (scope == 2) {

#pragma omp parallel for
for (int i=0; i<nx; i++)

cp[i]->Config(line);
}

}

// Initialize the inlet and interior instances; write out initial conditions.
if (cp_inlet.Initialize()) {

std::cout << "Inlet failed to initialize" << std::endl;
return exit_client(-1);

}
cp_inlet.PrintOutput("RTM.txt", "Inlet fluid");

123



ChemPlugin User’s Guide

int nerror = 0;
#pragma omp parallel for reduction(+ : nerror)

for (int i=0; i<nx; i++) {
if (cp[i]->Initialize()) {

std::cout << "Instance " << i << " failed to initialize" << std::endl;
nerror++;

}
}
if (nerror) return exit_client(-1);

write_results(cp, nx, delta_years, next_output);

// Query user for velocity; calculate flow rate and transmissivities.
double veloc_in; // m/yr
std::cout << "Please enter fluid velocity in m/yr: ";
std::cin >> veloc_in;
std::cin.ignore();
std::cout << std::endl;

double velocity = veloc_in / 31557600.; // m/s
double porosity = cp[0]->Report1("porosity"); // volume fraction
double flow = deltay * deltaz * porosity * velocity; // m3/s

double diffcoef = 1e-10; // m2/s
double dispersivity = 1.0; // m
double dispcoef = velocity * dispersivity + diffcoef; // m2/s
double trans = deltay * deltaz * porosity * dispcoef / deltax; // m3/s

double tcond = 2.0; // W/m/K
double ttrans = deltay * deltaz * tcond / deltax; // W/K

// Link the instances.
CpiLink link = cp[0]->Link(cp_inlet);
link.Transmissivity(trans, "m3/s");
link.HeatTrans(ttrans, "W/K");
link.FlowRate(flow, "m3/s");

#pragma omp parallel for
for (int i=1; i<nx; i++) {

CpiLink link = cp[i]->Link(cp[i-1]);
link.Transmissivity(trans, "m3/s");
link.HeatTrans(ttrans, "W/K");
link.FlowRate(flow, "m3/s");

}

link = cp[nx-1]->Link();
link.FlowRate(-flow, "m3/s");

124



Multithreading

// Time marching loop.
while (true) {

double deltat = 1e99;
#pragma omp parallel for reduction(min : deltat)

for (int i=0; i<nx; i++)
deltat = std::min(deltat, cp[i]->ReportTimeStep());

int nerror = 0;
#pragma omp parallel for reduction(+ : nerror)

for (int i=0; i<nx; i++)
if (cp[i]->AdvanceTimeStep(deltat)) nerror++;

if (nerror) return exit_client(0);

#pragma omp parallel for reduction(+ : nerror)
for (int i=0; i<nx; i++)

if (cp[i]->AdvanceTransport()) nerror++;
if (nerror) return exit_client(-1);

#pragma omp parallel for reduction(+ : nerror)
for (int i=0; i<nx; i++)

if (cp[i]->AdvanceHeatTransport()) nerror++;
if (nerror) return exit_client(-1);

#pragma omp parallel for reduction(+ : nerror) schedule(dynamic)
for (int i=0; i<nx; i++)

if (cp[i]->AdvanceChemical()) nerror++;
if (nerror) return exit_client(-1);

write_results(cp, nx, delta_years, next_output);
}

// Never gets here.
return 0;

}

125



126



Cluster Computing

To parallelize a client program on a computing cluster, a group of tightly networked
computers, you run duplicate copies of the client distributed across the cluster. Each
client copy is responsible for the calculations at only a portion of the ChemPlugin
instances considered in a run. Since the copies share the workload, computing clusters
offer the potential for faster turnaround, larger simulations, or both.

You might, for example, run a simulation making use of 32,000 ChemPlugin instances
on a cluster of 32 computers. In this case, you could launch 32 copies of the
client program, each running on its own computer, and each responsible for 1,000
ChemPlugin instances. Or, you could spawn 128 copies, four per computer, each
working on 250 instances. You can even work on a “cluster” of a single computer,
which can be helpful as you debug a client.

A cluster solution, as you can see, differs from a multithreaded program in that
rather than a single copy of the client program running across the cores on one
computer, multiple program copies run across a group of computers. It is possible
to implement a hybrid solution in which each client copy on a computing cluster is
multithreaded, thereby taking advantage of both parallelization strategies at once.
Such hybrid solutions are considered in the following chapter, Hybrid Parallelization.

15.1 MPI protocol
Computing clusters typically use a protocol called MPI, which stands for “Message
Passing Interface,” to manage copies of the client program and allow them to pass
information among themselves. Native MPI support is available in C++ and Fortran,
and we recommend you use one of those languages to code ChemPlugin client
programs under MPI.

When you launch a program, MPI sets up duplicate program copies in a global
communication group called “MPI_COMM_WORLD”. Each copy in a group of N has
a worker number or rank ranging from zero to N � 1. The first copy, with rank zero, is
sometimes referred to as the “master worker.”

The client copies as they run commonly need to share data among themselves,
so that one copy has access to information known to the others. In the case of
a ChemPlugin application, when a copy is creating a link, or considering transport
across one, the client needs to know conditions within the ChemPlugin instance at the

127



ChemPlugin User’s Guide

opposite end. The opposing instance might be known to the client copy in question,
another copy on the same computer, or a copy of the program running elsewhere in
the cluster.

The onus in cluster computing is on the programmer to arrange data sharing when
necessary, and preferably only when necessary, since the clients must pause their
work to transmit and gather information, and much of the data may need to pass among
computers over the network, a relatively slow process. Fortunately, the ChemPlugin
library wraps the gathering and scattering of data into a single function call, greatly
reducing the burden of cluster computing on the programmer.

15.2 ChemPlugin under MPI
To run on a computing cluster, a ChemPlugin client program needs to pull in from file
“chemplugin_mpi.dll” (or “chemplugin_mpi.so” under Linux) a special MPI version of
the software object. The client creates a family of these special ChemPlugin instances
and controls them, as before, with member function calls.

In this section, we explore a few special considerations needed to launch a client
program in MPI, spawn ChemPlugin instances, and control them across a distributed
environment.

15.2.1 Initializing MPI
A client program needs to take a few extra steps as it starts up in an MPI environment.
The user runs a cluster simulation by telling the system to launch a group of program
copies. A copy, however, is born knowing only about itself; to work as part of the
group, it needs to determine the group’s size and its position or rank within the group.

To this end, a client begins by initializing the MPI library and querying it to learn
group size and the copy’s rank

// Initialize MPI
MPI_Init(NULL, NULL);
// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
// Get the rank of this process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

The size and rank are held in variables “world_size” and “world_rank”.

15.2.2 Instantiation
You instantiate a ChemPlugin instance under MPI in two steps. First, use ChemPlugin’s
constructor

ChemPlugin cp;

128



Cluster Computing

to create a stub for a ChemPlugin object. The stub contains empty member functions
and will hold a few critical details about the corresponding ChemPlugin object, once
it has been created. Significantly, each client copy instantiates stubs for the entire
family of ChemPlugin objects to be considered by the communication group, not just
the instances for which it will be responsible.

You then use the “MpiAssign()” member function

cp.MpiAssign(i);

to associate the stub with a specific copy of the client program. In this case, instance
“cp” is assigned to the client copy of rank “i”. That client copy expands the stub for
“cp” into a local ChemPlugin instance, whereas the other copies simply take note of
the stub’s assignment as a foreign instance.

A given ChemPlugin instance exists on only one client copy, then; the remaining
copies contain only a stub associated with the instance. The first client program in
the group is responsible for doing work associated with each ChemPlugin instance
assigned a rank of zero, the second program copy handles instances with a rank of
one, and so on.

You can alternatively create a ChemPlugin stub and assign it to a program copy in
one step. ChemPlugin’s constructor normally allows two arguments, as described in
the Overview chapter, one for setting the output stream and a second that lets you
specify various program options. For the cluster version of ChemPlugin, you can set
as a third argument the rank to be assigned to the instance being created.

By passing rank to the constructor, you conflate the construction and assignment
steps onto a single line of code. For example, the line

ChemPlugin cp(NULL, NULL, i);

creates a stub for an instance “cp”; assigns it a rank of “i”; and, on client copy “i”
alone, expands it into a local ChemPlugin object. We did not make use of the first
two arguments in this case, so “NULL” serves as a placeholder.

15.2.3 Assigning rank
It is important that each client copy assign a rank to every ChemPlugin instance to be
considered by the group, whether the instance is local or foreign. The code fragment,
for example

ChemPlugin cp;
// Do not do this!
if (world_rank == i) cp.MpiAssign(i);

is incorrect, because “cp” is assigned a rank by only client copy “i”, rather than by
each copy in the communication group. Instead, the code

129



ChemPlugin User’s Guide

ChemPlugin cp;
cp.MpiAssign(i);

works correctly.
For a vector of instances, similarly, every client copy constructs a stub for each of

the group’s instances and then associates the stub with a single client copy. Consider
the code

std::vector<ChemPlugin> cp(nx);
for (int i=0; i<nx; i++)

cp[i].MpiAssign(i * world_size / nx);

noting especially the “MpiAssign()” call. Here, the integer expression “i * world_size /
nx” serves to divide the instances evenly among the copies. If the number of copies
“world_size” is 32 and the number of instances “nx” is 32,000, then the first 1000
instances are assigned to the first client copy, the next 1000 to the second copy, and
so on.

You can significantly speed execution of a client programs by minimizing the number
of links between ChemPlugin instances of different ranks. When a link connects two
instances of the same rank, the program does not need to obtain any data from other
client copies to evaluate transport, since the instances are assigned to the same copy.
When the instances differ in rank, in contrast, accounting for transport across the
link inevitably involves data transfer, either between copies on the same computer, or
more commonly across the network between copies running elsewhere in the cluster,
a comparatively slow process.

As an example, consider a case in which the instances “cp” are to be linked in a
linear chain. In the code fragment

// Probably a bad idea!
std::vector<ChemPlugin> cp(nx);
for (int i=0; i<nx; i++)

cp[i].MpiAssign(i % world_size);

where “%” is the modulus operator, the expression “i % world_size” assigns rank in
rotation. Linking the instances in a line, each link now connects instances of differing
rank, and hence assigned to different client copies. The transfer overhead in this case
will be sharply higher than in the first case, where the expression “i * world_size / nx”
assigned rank in chunks.

15.2.4 Calling member functions
A client can call the member functions of any ChemPlugin instance under MPI, not
just the ones assigned to it. If the ChemPlugin instance is local, that is to say of the
same rank as the calling program, the function call proceeds as usual. Whenever the

130



Cluster Computing

instance is foreign and hence assigned to a different client copy, on the other hand,
the function call returns without doing work.

A client, then, doesn’t need to keep track of which ChemPlugin instances belong
to it, which simplifies coding. As an example, consider the loop

std::vector<ChemPlugin> cp(nx);
... some code ...
for (int i=0; i<nx; i++)

cp[i].Initialize();

We might be tempted to recode the loop as

std::vector<ChemPlugin> cp(nx);
... some code ...
for (int i=0; i<nx; i++)

// This step is not necessary!
if (cp[i].MpiOnRank())

cp[i].Initialize();

where the “MpiOnRank()” member function returns non-zero if “cp[i]” is local.
The “if” statement here, while certainly acceptable, is unnecessary, since calls for

“Initialize()” for foreign instances “cp[i]” return without doing work. Nesting “if” checks
when calling member functions adds to a code’s complexity without providing significant
benefit.

15.2.5 Transferring data
When a ChemPlugin instance forms a link with another instance, and again when it
transfers mass or heat across the link, it needs to know current information about the
opposing instance. For a conventional client program, retrieving this data is a simple
matter, because both instances share the same memory space.

In cluster computing, the task is more complex, because the opposing instance may
be found on a different client copy, perhaps on a different computer. ChemPlugin’s
strategy is to cache data from the opposing instance at each link to a foreign instance,
within the CpiLink object inself. In this way, current information is at hand when needed,
as long as the programmer periodically updates the cache.

You use the “MpiUpdateLink()” member function from the CpiLink object to update
a link’s cache. In the code fragment

for (int i=0; i<nx; i++)
for (int l=0; l<cp[i].nLinks(); l++)

cp[i].Link(l).MpiUpdateLink();

the client scans across the links on every ChemPlugin instance.
On a pass in which instance “i” is assigned locally, but the opposing instance across

link “l” is not, the client needs to cache information about the opposing instance. In

131



ChemPlugin User’s Guide

this case, the call to “MpiUpdateLink()” waits to receive this information from another
client copy.

In the converse case, when instance i is foreign, but the opposing instance is local,
the client realizes that another copy must be, or soon will be waiting for information.
In this case, the “MpiUpdateLink()” call transmits the state of the opposing instance.
Once the data is received, the copies are released to continue execution.

Passing data in this way is known in cluster computing as synchronous
communication, which means each client copy must process attempts at data
transfer in the same order. If the copies were to update links in different permutations,
the group might easily fall into a gridlock in which one client copy pauses to wait for
a transmission from another copy, which itself is stopped waiting for data from the
first copy.

15.2.6 Retrieving results
The “Report()” family of functions, described in Retrieving Results, works like other
member functions, depending on whether it is called for a local or a foreign instance.
For a local instance, the functions behave normally, but called for a foreign instance,
they return a placeholder value, without doing any work. The placeholder value is zero
for “Report()”, “ANULL” for “Report1()”, “ANULL” cast as an integer for “Report1i()”,
and a NULL pointer for “Report1c()”.

Consider as an example a client program that needs to know partial pressure in MPa
of the various gases considered in the simulation in order to carry out a calculation.
In the code fragment

double *Pgas = new double[ngas];
for (int i=0; i<nx; i++) {

int len = cp[i].Report(Pgas, "gas_pressure", "MPa");
if (len) {

... some code ...
}

}

variable “len” is non-zero when “i” points to a local instance, and zero otherwise. The
code, then, uses the gas pressures at local instances for its purposes, leaving work
for foreign instances to the other client copies.

For a client needing the partial pressure of only CO2 gas, the code might instead
be posed

for (int i=0; i<nx; i++) {
double pCO2 = cp[i].Report1("gas_pressure CO2(g)", "MPa");
if (pCO2 != ANULL) {

... some code ...
}

}

132



Cluster Computing

Again, the loop would carry out the calculations for local, but not foreign ChemPlugin
instances.

In cases in which the client needs to retrieve information from any ChemPlugin
instance, whether local or foreign, you use the “MpiReport()” family of functions,
which includes “MpiReport()”, “MpiReport1()”, “MpiReport1i()”, and “MpiReport1c()”.
The functions work like their counterparts “Report()” and so on, except they can
retrieve results from instances assigned to any client copy.

Suppose, for example, each client copy needs a list of pH values at a number of
ChemPlugin instances, even though some of the instances may be associated with
other copies. The code fragment

double *pH_list = new double[nx];
for (int i=0; i<nx; i++)

pH_list[i] = cp[i].MpiReport1("pH");

creates a vector “pH_list” of pH values at instances zero through “nx”, regardless of
where the instances are assigned.

The “MpiReport()” family of functions, like the “MpiUpdate()” function, is synchronous,
meaning each client copy needs to call the function in the same sequence. The need
for parallel ordering arises because at each pass through the loop, one client copy
broadcasts information while the others wait to receive it, and they must pause until
the transmission is complete.

As an example, in the code

std::vector<double> pH_list(nx);
// Do not do this!
if (world_rank == 0)

for (int i=0; i<nx; i++)
pH_list[i] = cp[i].MpiReport1("pH");

only the first client copy in the group, the one of rank zero, calls “MpiReport1()”. The
copy in this case would be left waiting indefinitely the first time it tries to receive the
pH from a foreign instance, since no copy will be sending that information.

There is a way, however, to use the “MpiReport()” family of functions to allow a
single client copy to collect information from the other copies. To do so, you append
the rank of the collector copy to the function arguments. The function in this case
executes normally on the collector copy, as well as the client copy associated with the
ChemPlugin instance in question. On the remaining copies, the function call returns
a placeholder value, without doing work.

Consider a case in which the first client copy needs to assemble inorganic lead
concentrations in �mol kg�1 from a group of instances, some of which are assigned
to other copies. The fragment

int collector = 0;
double *conc = NULL;

133



ChemPlugin User’s Guide

if (world_rank == collector) conc = new double[nx];

for (int i=0; i<nx; i++) {
double ci = cp[i].MpiReport1("concentration Pb++", "umol/kg", collector);
if (world_rank == collector) conc[i] = ci;

}

accomplishes this task, as long as the loop runs on copy “collector” as well as the
client copies responsible for the instances “cp[i]”. If we had coded the loop

for (int i=0; i<nx; i++)
// Do not do this, either!
if (world_rank == collector)

conc[i] = cp[i].MpiReport1("concentration Pb++", "umol/kg", collector);

execution would fail, because “MpiReport1()” is called only by the collector copy.
As a second example, the collector copy needs the concentration of all the species

considered by an instance “cp”, which might have been assigned to any client copy.
We could code this case as

double *conc = NULL;
int nsp = cp.MpiReport(NULL, "concentration aqueous", "", collector);
if (nsp > 0) conc = new double[nsp];
cp.MpiReport(conc, "concentation aqueous", "umol/kg", collector);

Running the code on all the client copies, the first call to “MpiReport()” would return
a non-zero “nsp” on only “collector” and the copy to which “cp” is assigned. On the
remaining copies, there is no need to allocate memory for “conc”, because the second
“MpiReport()” call returns without doing work.

As an alternative, we could recode the fragment above as

double *conc = NULL;
int nsp = 0;
if (world_rank == collector || cp.OnRank()) {

int nsp = cp.MpiReport(NULL, "concentration aqueous", "", collector);
conc = new double[nsp];
cp.MpiReport(conc, "concentation aqueous", "umol/kg", collector);

}

with equal validity. In either case, we see that only the collector copy and the copy
responsible for “cp” are involved in the data transfer.

If you do not specify a unit when calling a function in the “Report()” family, you
need to include a placeholder argument to set a collector. Since the pH has no unit,
for example, the code

134



Cluster Computing

for (int i=0; i<nx; i++) {
double pH = cp[i].MpiReport1("pH", NULL, collector);
... some code ...

}

needs to set the second parameter to “NULL” or an empty string ‘ “” ’. Finally, specifying
a trailing parameter of “GLOBAL”

double pH = cp.MpiReport1("alkalinity", "meq_acid/kg", GLOBAL);

signifies the entire group is to serve as collector, and hence reverts to the behavior
in the absence of the parameter, as described previously.

15.3 Code changes
To see how all this works, we adapt in this chapter the “RTM1.cpp” client program from
the Reactive Transport Model chapter and its multithreaded counterpart “RTM2.cpp”
from the Multithreading chapter to make an MPI program “RTM3.cpp” that runs in
parallel on computing clusters.

As we build our MPI client, keep in mind that a number of copies of the client
program will run together on the cluster, and that each ChemPlugin instance spawned
will be associated with only one of those copies. Recall as well that a client can call the
member functions of any ChemPlugin instance, whether assigned to itself or another
program copy: if the instance is assigned elsewhere, the function call simply returns
without doing work.

The discussion below lays out the changes required to turn “RTM1.cpp” and
“RTM2.cpp” into the cluster computing application “RTM3.cpp”. A full listing of the
resulting code appears at the end of this chapter. You may find it useful to consult
a text or tutorial on MPI programming, either before beginning or as you encounter
new concepts.

15.3.1 Header files
In the header section of “RTM2.cpp’, we replace the OpenMP header with the line

#include <mpi.h>

which pulls in the header for the MPI library’s SDK, or software development kit.
An MPI SDK appropriate for your cluster, of course, needs to be installed in your
environment.

15.3.2 Ancillary functions
Three functions at the top of the “RTM2.cpp” code provide for terminating program
execution, opening an input file, and writing simulation results. Adapting the functions
for cluster computing demonstrates useful principles for developing MPI code.

135



ChemPlugin User’s Guide

Function “exit_client()” terminates the program normally when called with parameter
“status” set to zero, at the end of time marching, and abnormally when “status” is
non-zero, if the client has encountered an error condition. The function’s MPI version

int exit_client(int status)
{

if (status != 0)
MPI_Abort(MPI_COMM_WORLD, status);

MPI_Finalize();
return status;

}

calls “MPI_finalize()” in the former case to gracefully wrap up execution of the client
copy. In the latter case, however, the client has encountered an unrecoverable error,
in which case the function calls “MPI_Abort()” to force each copy in the group to
terminate, not just the copy in question.

The “open_input()” function differs from “RTM1.cpp” in that, while not strictly
necessary, MPI clients generally run as batch jobs, rather than interactively. As such,
the function

void open_input(std::ifstream& input, int argc, char** argv) {
std::string filename;
if (argc < 2) {

std::cerr << "You must specify an input file as the first program argument."
<< std::endl;

exit_client(-1);
}
else {

filename = argv[1];
}

input.open(filename);

if (!input.is_open()) {
std::cerr << "The input file does not exist" << std::endl;
exit_client(-1);

}
}

looks for the name of the input file on the command line used to launch the program,
instead of querying the user for it. In C++, “argc” is the number of arguments on the
command line, including the command itself, and “argv[1]” points to the first argument.

The MPI version of function “write_results()”

void write_results(std::vector<ChemPlugin>& cp, int nx, double gap, double& then)
{

double now = cp[0].MpiReport1("Time", "years");

136



Cluster Computing

int step = nx / 100;
if ((then - now) < gap / 1e4) {

int last_rank = cp[0].MpiRank();
for (int i=0; i<nx; i+=step) {

if (cp[i].MpiRank() != last_rank) {
last_rank = cp[i].MpiRank();
MPI_Barrier(MPI_COMM_WORLD);

}
std::string label = "Instance " + std::to_string(i);
cp[i].PrintOutput("RTM.txt", label);

}
then += gap;

}
}

works by scanning across the ChemPlugin instances making up the domain, as it
does in “RTM2.cpp”. On a given pass through the loop, only the client copy identified
by “cp[i].MpiRank()” is doing work when it calls “PrintOutput()”; calls by the other
copies return immediately.

As it scans, the function takes note of when rank changes from one instance to
the next. A change in rank triggers a call to “MPI_Barrier()”, which forces all client
copies in “MPI_COMM_WORLD” to pause execution until each reaches that point in
the loop. Pausing in this way gives the copy doing work a chance to catch up with
the other copies. Absent the call to “MPI_Barrier()”, the client copies would write into
the output file at the same time, leaving a jumbled mess.

15.3.3 Client startup
At the head of the client program itself is code to initialize the MPI library and determine
group size and the copy’s rank

// Initialize MPI
MPI_Init(NULL, NULL);
// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
// Get the rank of this process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

as previously described. The first client copy, the one of rank zero, proceeds to write
a header message

if (world_rank == 0)
std::cout << std::endl

137



ChemPlugin User’s Guide

<< "Model reactive transport in one dimension using MPI"
<< std::endl << std::endl;

If we had not limited this step to a single client, the message would be directed into
the standard output stream “world_size” times, probably in an interspersed mishmash.

15.3.4 Instantiation
You instantiate ChemPlugin instances, as discussed previously in this chapter, in two
steps under MPI. Each client copy uses the ChemPlugin constructor

ChemPlugin cp_inlet;
std::vector<ChemPlugin> cp(nx);

to create a stub for all of the ChemPlugin instances to be considered by the
communication group. You then associate each stub with a single client copy

cp_inlet.MpiAssign(0);
for (int i=0; i<nx; i++)

cp[i].MpiAssign(i * world_size / nx);

by assigning it a rank. When the assigned rank matches that of the client copy, the
stub expands into a full ChemPlugin instance.

Here, instance “cp_inlet” is associated with the first client copy, or rank zero, and
responsibility for instances “cp” is distributed in chunks among the client copies, using
the method discussed previously.

15.3.5 Work sharing loops
Coding ChemPlugin work sharing loops is more straightforward in MPI than in OpenMP.
Specifically, compiler directives are not required and the need for special reductions
is reduced.

As an example, the OpenMP code

int nerror = 0;
#pragma omp parallel for reduction(+ : nerror)

for (int i=0; i<nx; i++) {
if (cp[i].Initialize()) {

std::cout << "Instance " << i << " failed to initialize" << std::endl;
nerror++;

}
}
if (nerror) return exit_client(-1);

might appear in an MPI client as

138



Cluster Computing

for (int i=0; i<nx; i++) {
if (cp[i].Initialize()) {

std::cout << "Instance " << i << " failed to initialize" << std::endl;
return exit_client(-1);

}
}

The “#pragma” directive is eliminated, as is the reduction on “nerror” and the need to
wait until the loop completes to exit.

15.3.6 Setting velocity
Since our client is designed as a batch, rather than interactive program, we replace
code querying the user for velocity with the lines

double veloc_in; // m/yr
if (argc < 3) {

std::cerr << "You must specify fluid velocity in m/yr as the "
"second program argument." << std::endl;

exit_client(-1);
}
veloc_in = atof(argv[2]);

The code here assigns velocity as the second argument of the command that launched
the program.

15.3.7 Linking
The code for linking instances

// Link the instances.
CpiLink link = cp[0].Link(cp_inlet);
link.Transmissivity(trans, "m3/s");
link.HeatTrans(ttrans, "W/K");
link.FlowRate(flow, "m3/s");

for (int i=1; i<nx; i++) {
link = cp[i].Link(cp[i-1]);
link.Transmissivity(trans, "m3/s");
link.HeatTrans(ttrans, "W/K");
link.FlowRate(flow, "m3/s");

}

link = cp[nx-1].Link();
link.FlowRate(-flow, "m3/s");

139



ChemPlugin User’s Guide

is essentially unchanged from “RTM1.cpp”, the monothreaded version of this client.
Under MPI, however, the “cp[i].Link()” function call works by gathering the information
it needs about the linked instance, transferring data from another client copy when
necessary, as described in the next section.

15.3.8 Time marching loop
The time marching loop in “RTM3.cpp”

while (true) {
double deltat = 1e99, deltat_world;
for (int i=0; i<nx; i++)

deltat = std::min(deltat, cp[i].ReportTimeStep());
MPI_Allreduce(&deltat, &deltat_world, 1,

MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD);

for (int i=0; i<nx; i++)
if (cp[i].AdvanceTimeStep(deltat_world)) return exit_client(0);

for (int i=0; i<nx; i++)
for (int l=0; l<cp[i].nLinks(); l++)

if (cp[i].Link(l).MpiUpdateLink()) return exit_client(-1);

for (int i=0; i<nx; i++)
if (cp[i].AdvanceTransport()) return exit_client(-1);

for (int i=0; i<nx; i++)
if (cp[i].AdvanceHeatTransport()) return exit_client(-1);

for (int i=0; i<nx; i++)
if (cp[i].AdvanceChemical()) return exit_client(-1);

write_results(cp, nx, delta_years, next_output);
}

differs in only a couple of places from that in the serial version “RTM1.cpp”.
First, the code for determining the time step

double deltat = 1e99, deltat_world;
for (int i=0; i<nx; i++)

deltat = std::min(deltat, cp[i].ReportTimeStep());
MPI_Allreduce(&deltat, &deltat_world, 1,

MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD);

begins by scanning for the smallest time step “deltat” reported by local instances,
given that “cp[i].ReportTimeStep()” returns a large number for instances belonging to
another client copy. It then calls the library function “MPI_Allreduce()” to find the least
value determined by the entire group, which is returned in “deltat_world”.

140



Cluster Computing

Second, after advancing the time step at the ChemPlugin instances, the code calls
“MpiUpdateLink()” to sync each link among the instances

for (int i=0; i<nx; i++)
for (int l=0; l<cp[i].nLinks(); l++)

if (cp[i].Link(l).MpiUpdateLink()) return exit_client(-1);

The program terminates if “MpiUpdateLink()” returns an error code.
The procedure for advancing the transport and chemical equations is unchanged

from the serial version.

15.4 Running the example
The procedure for compiling and executing a ChemPlugin client on a computing cluster
varies from one cluster to another and may involve console commands, graphical
dashboards, or both. You should consult your system administrator before attempting
to run your program.

To compile a C++ program for MPI, you normally use a wrapper such as “mpicl”
designed for cluster computing, in place of a call to a conventional compiler like “icl”.
Among other benefits, using the correct command will cause the system to pull in the
MPI include files and libraries.

The command to compile program “RTM3.cpp” under Windows using “mpicl” might
be

mpicl RTM3.cpp -I "C:\Program Files\ChemPlugin\src" \
"C:\Program Files\ChemPlugin\ChemPlugin.lib"

assuming the ChemPlugin software is installed in “C:\Program Files\ChemPlugin”.
Under Linux, the command might be

mpicl++ RTM3.cpp -I "/usr/local/ChemPlugin/src" \
"/usr/local/ChemPlugin/ChemPlugin.lib"

where ChemPlugin is installed under “/usr/local/ChemPlugin”. The compilation and
subsequent linking should produce an executable file “RTM3.exe”.

Among the ways that may be available to you to launch an MPI communication
group, perhaps the simplest is the “mpiexec” command. As an example, entering

mpiexec -n 32 RTM3 myInput.cpi 100.0

launches 32 copies of RTM3, using “myInput.cpi” as the input file and “100.0’ as the
velocity. Again, you should discuss your needs with your system administrator before
attempting to run the program.

141



ChemPlugin User’s Guide

15.5 C++ source code
The full C++ code for the client program is available on the ChemPlugin.GWB.com
website as file “RTM3.cpp”, and is listed below.

Note: The code is also available in FORTRAN from ChemPlugin.GWB.com.

#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <algorithm>
#include "ChemPlugin.h"
#include <mpi.h>

int exit_client(int status)
{

if (status != 0)
MPI_Abort(MPI_COMM_WORLD, status);

MPI_Finalize();
return status;

}

void open_input(std::ifstream& input, int argc, char** argv) {
std::string filename;
if (argc < 2) {

std::cerr << "You must specify an input file as the first program argument."
<< std::endl;

exit_client(-1);
}
else {

filename = argv[1];
}

input.open(filename);

if (!input.is_open()) {
std::cerr << "The input file does not exist" << std::endl;
exit_client(-1);

}
}

void write_results(std::vector<ChemPlugin>& cp, int nx, double gap, double& then)
{

double now = cp[0].MpiReport1("Time", "years");
int step = nx / 100;
if ((then - now) < gap / 1e4) {

int last_rank = cp[0].MpiRank();
for (int i=0; i<nx; i+=step) {

142



Cluster Computing

if (cp[i].MpiRank() != last_rank) {
last_rank = cp[i].MpiRank();
MPI_Barrier(MPI_COMM_WORLD);

}
std::string label = "Instance " + std::to_string(i);
cp[i].PrintOutput("RTM.txt", label);

}
then += gap;

}
}

int main(int argc, char** argv) {
// Initialize MPI
MPI_Init(NULL, NULL);
// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
// Get the rank of this process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

if (world_rank == 0)
std::cout << std::endl

<< "Model reactive transport in one dimension using MPI"
<< std::endl << std::endl;

// Simulation parameters.
int nx = 4000; // number of instances along x
double length = 100; // m
double deltax = length / nx; // m
double deltay = 1.0, deltaz = 1.0; // m

double time_end = 10.0; // years
double delta_years = time_end / 5; // years
double next_output = 0.0; // years

// Create the inlet and interior instances.
ChemPlugin cp_inlet;
std::vector<ChemPlugin> cp(nx);

// Assign instances to ranks
cp_inlet.MpiAssign(0);
for (int i=0; i<nx; i++)

cp[i].MpiAssign(i * world_size / nx);

cp_inlet.Console("stdout");
cp[0].Console("stdout");
cp[0].Config("pluses = banner");

143



ChemPlugin User’s Guide

std::string cmd = "volume = " + std::to_string(deltax * deltay * deltaz) +
" m3; time end = " + std::to_string(time_end) + " years";

for (int i=0; i<nx; i++)
cp[i].Config(cmd);

// Set input file and configure inlet, initial domain.
std::ifstream input;
open_input(input, argc, argv);
int scope = 0;
while (!input.eof()) {

std::string line;
std::getline(input, line);
if (line == "go")

break;
else if (line == "scope inlet")

scope = 1;
else if (line == "scope initial")

scope = 2;
else if (scope == 1)

cp_inlet.Config(line);
else if (scope == 2)

for (int i=0; i<nx; i++)
cp[i].Config(line);

}

// Initialize the inlet and interior instances; write out initial conditions.
if (cp_inlet.Initialize()) {

std::cout << "Inlet failed to initialize" << std::endl;
return exit_client(-1);

}
cp_inlet.PrintOutput("RTM.txt", "Inlet fluid");

for (int i=0; i<nx; i++) {
if (cp[i].Initialize()) {

std::cout << "Instance " << i << " failed to initialize" << std::endl;
return exit_client(-1);

}
}
write_results(cp, nx, delta_years, next_output);

// Set velocity; calculate flow rate and transmissivities.
double veloc_in; // m/yr
if (argc < 3) {

std::cerr << "You must specify fluid velocity in m/yr as the "
"second program argument." << std::endl;

exit_client(-1);
}

144



Cluster Computing

veloc_in = atof(argv[2]);

double velocity = veloc_in / 31557600.; // m/s
double porosity = cp[0].MpiReport1("porosity"); // volume fraction
double flow = deltay * deltaz * porosity * velocity; // m3/s

double diffcoef = 1e-10; // m2/s
double dispersivity = 1.0; // m
double dispcoef = velocity * dispersivity + diffcoef; // m2/s
double trans = deltay * deltaz * porosity * dispcoef / deltax; // m3/s

double tcond = 2.0; // W/m/K
double ttrans = deltay * deltaz * tcond / deltax; // W/K

// Link the instances.
CpiLink link = cp[0].Link(cp_inlet);
link.Transmissivity(trans, "m3/s");
link.HeatTrans(ttrans, "W/K");
link.FlowRate(flow, "m3/s");

for (int i=1; i<nx; i++) {
link = cp[i].Link(cp[i-1]);
link.Transmissivity(trans, "m3/s");
link.HeatTrans(ttrans, "W/K");
link.FlowRate(flow, "m3/s");

}

link = cp[nx-1].Link();
link.FlowRate(-flow, "m3/s");

// Time marching loop.
while (true) {

double deltat = 1e99, deltat_world;
for (int i=0; i<nx; i++)

deltat = std::min(deltat, cp[i].ReportTimeStep());
MPI_Allreduce(&deltat, &deltat_world, 1,

MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD);

for (int i=0; i<nx; i++)
if (cp[i].AdvanceTimeStep(deltat_world)) return exit_client(0);

for (int i=0; i<nx; i++)
for (int l=0; l<cp[i].nLinks(); l++)

if (cp[i].Link(l).MpiUpdateLink()) return exit_client(-1);

for (int i=0; i<nx; i++)
if (cp[i].AdvanceTransport()) return exit_client(-1);

145



ChemPlugin User’s Guide

for (int i=0; i<nx; i++)
if (cp[i].AdvanceHeatTransport()) return exit_client(-1);

for (int i=0; i<nx; i++)
if (cp[i].AdvanceChemical()) return exit_client(-1);

write_results(cp, nx, delta_years, next_output);
}

// Never gets here.
return 0;

}

146



Hybrid Parallelization

A hybrid client is a cluster computing program in which each program copy in a
communication group is multithreaded. As such, a hybrid client takes advantage of
two types of parallelism at once: it splits the work across the machines in a cluster,
and spreads each machine’s work over its computing cores.

Once you feel comfortable with the previous two chapters, Multithreading and
Cluster Computing, coding a hybrid client is straightforward. If you are already working
on a computing cluster, the upside to multithreading your app is significant, and there
is little practical reason not to do so.

We develop in this chapter a hybrid client program “RTM4.cpp”, which is set out
almost entirely as a line-by-line interweaving of the OpenMP client “RTM2.cpp’ from
the Multithreading chapter with the MPI client “RTM3.cpp” from the previous chapter,
Cluster Computing.

In laying out the hybrid MPI/OpenMP client in this way, two considerations come
into play. First, loops that create links with the “Link()” member function, those that
update links by calling “MpiUpdateLink()”, as well as loops calling any of the “Report()”
family of functions may not be multithreaded; instead the loops need to run serially
on each client copy. This requirement arises because under MPI the functions need
to be called in a specific order, and OpenMP does not preserve loop order within a
parallel region.

Second, care should be taken in scheduling OpenMP loops, to achieve optimal
speedup. This point is addressed on the next section.

16.1 Loop scheduling
Recall from the Loop scheduling section of the Multithreading chapter that OpenMP
by de facto default employs static scheduling. In a static schedule, a multithreaded
app splits the passes through a loop into contiguous chunks, sending each chunk to
run on one of the cores. Take, for example, a client running on a computer with eight
cores that has spawned 32,000 ChemPlugin instances. OpenMP, by default, would
divide the instances into chunks of 4,000; core zero would be responsible the first
4,000, core one for the next 4,000, and so on.

In cluster computing, such an arrangement may work poorly, because each client
copy does work on only a fraction of the ChemPlugin instances, and those instances

147



ChemPlugin User’s Guide

may not be distributed among the chunks. If a client copy from a communication group
of 32 ran the loop

#pragma omp parallel for schedule(static)
for (int i=0; i<nx; i++)

cp[i].Config(cmd);

where “nx” was 32,000, for example, each copy would be responsible for 1,000 of
the instances. Following a static schedule, those 1,000 instances would fall within
a single chunk of 4,000 loop passes, so on each client copy only one of the cores
would do work.

An effective strategy to avoid such a situation is to set the OpenMP loop to work
in smaller chunks. In our example, if we were to divide the loop into chunks of 125
passes, each of the eight cores would end up working on its share of the 1,000
instances assigned to the client copy. The code

int chunk_size = nx / world_size / omp_get_max_threads();

#pragma omp parallel for schedule(static, chunk_size)
for (int i=0; i<nx; i++)

cp[i].Config(cmd);

divides the number of instances by the group size, and then by the number of cores
on the computer to arrive at a chunk size that allocates work evenly.

16.2 Running the example
The procedure for compiling and executing a hydrid ChemPlugin client on a computing
cluster is commonly similar to that for running a simple MPI client, as described in
the Running the example section from the Cluster Computing chapter. You should
consult your system administrator for detailed information.

16.3 C++ source code
The full C++ code for the client program is available on the ChemPlugin.GWB.com
website as file “RTM4.cpp”, and is listed below.

Note: The code is also available in FORTRAN from ChemPlugin.GWB.com.

#include <iostream>
#include <fstream>
#include <string>
#include <omp.h>
#include <vector>
#undef min
#include <algorithm>
#include "ChemPlugin.h"

148



Hybrid Parallel Computing

#include <mpi.h>

int exit_client(int status)
{

if (status != 0)
MPI_Abort(MPI_COMM_WORLD, status);

MPI_Finalize();
return status;

}

void open_input(std::ifstream& input, int argc, char** argv) {
std::string filename;
if (argc < 2) {

std::cerr << "You must specify an input file as the first program argument."
<< std::endl;

exit_client(-1);
}
else {

filename = argv[1];
}

input.open(filename);

if (!input.is_open()) {
std::cerr << "The input file does not exist" << std::endl;
exit_client(-1);

}
}

void write_results(std::vector<ChemPlugin>& cp, int nx, double gap, double& then)
{

double now = cp[0].MpiReport1("Time", "years");
int step = nx / 100;
if ((then - now) < gap / 1e4) {

int last_rank = cp[0].MpiRank();
for (int i=0; i<nx; i+=step) {

if (cp[i].MpiRank() != last_rank) {
last_rank = cp[i].MpiRank();
MPI_Barrier(MPI_COMM_WORLD);

}
std::string label = "Instance " + std::to_string(i);
cp[i].PrintOutput("RTM.txt", label);

}
then += gap;

}
}

int main(int argc, char** argv) {

149



ChemPlugin User’s Guide

// Initialize MPI
MPI_Init(NULL, NULL);
// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of this process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

if (world_rank == 0)
std::cout << std::endl

<< "Model reactive transport in one dimension using MPI and OPENMP"
<< std::endl << std::endl;

// Simulation parameters.
int nx = 4000; // number of instances along x
double length = 100; // m
double deltax = length / nx; // m
double deltay = 1.0, deltaz = 1.0; // m

double time_end = 10.0; // years
double delta_years = time_end / 5; // years
double next_output = 0.0; // years

// Schedule OpenMP to split work evenly among the threads.
int chunk_size = nx / world_size / omp_get_max_threads();

// Create the inlet and interior instances.
ChemPlugin cp_inlet;
std::vector<ChemPlugin> cp(nx);

// Assign instances to ranks
cp_inlet.MpiAssign(0);

#pragma omp parallel for schedule(static, chunk_size)
for (int i=0; i<nx; i++)

cp[i].MpiAssign(i * world_size / nx);

cp_inlet.Console("stdout");
cp[0].Console("stdout");
cp[0].Config("pluses = banner");

std::string cmd = "volume = " + std::to_string(deltax * deltay * deltaz) +
" m3; time end = " + std::to_string(time_end) + " years";

#pragma omp parallel for schedule(static, chunk_size)
for (int i=0; i<nx; i++)

cp[i].Config(cmd);

150



Hybrid Parallel Computing

// Set input file and configure inlet, initial domain.
std::ifstream input;
open_input(input, argc, argv);
int scope = 0;
while (!input.eof()) {

std::string line;
std::getline(input, line);
if (line == "go")

break;
else if (line == "scope inlet")

scope = 1;
else if (line == "scope initial")

scope = 2;
else if (scope == 1)

cp_inlet.Config(line);
else if (scope == 2)

#pragma omp parallel for schedule(static, chunk_size)
for (int i=0; i<nx; i++)

cp[i].Config(line);
}

// Initialize the inlet and interior instances; write out initial conditions.
if (cp_inlet.Initialize()) {

std::cout << "Inlet failed to initialize" << std::endl;
return exit_client(-1);

}
cp_inlet.PrintOutput("RTM.txt", "Inlet fluid");

int nerror = 0;
#pragma omp parallel for reduction(+ : nerror) schedule(static, chunk_size)

for (int i=0; i<nx; i++) {
if (cp[i].Initialize()) {

std::cout << "Instance " << i << " failed to initialize" << std::endl;
nerror++;

}
}
if (nerror) return exit_client(-1);

write_results(cp, nx, delta_years, next_output);

// Set velocity; calculate flow rate and transmissivities.
double veloc_in; // m/yr
if (argc < 3) {

std::cerr << "You must specify fluid velocity in m/yr as the "
"second program argument." << std::endl;

exit_client(-1);
}
veloc_in = atof(argv[2]);

151



ChemPlugin User’s Guide

double velocity = veloc_in / 31557600.; // m/s
double porosity = cp[0].MpiReport1("porosity"); // volume fraction
double flow = deltay * deltaz * porosity * velocity; // m3/s

double diffcoef = 1e-10; // m2/s
double dispersivity = 1.0; // m
double dispcoef = velocity * dispersivity + diffcoef; // m2/s
double trans = deltay * deltaz * porosity * dispcoef / deltax; // m3/s

double tcond = 2.0; // W/m/K
double ttrans = deltay * deltaz * tcond / deltax; // W/K

// Link the instances.
CpiLink link = cp[0].Link(cp_inlet);
link.Transmissivity(trans, "m3/s");
link.HeatTrans(ttrans, "W/K");
link.FlowRate(flow, "m3/s");

for (int i=1; i<nx; i++) {
link = cp[i].Link(cp[i-1]);
link.Transmissivity(trans, "m3/s");
link.HeatTrans(ttrans, "W/K");
link.FlowRate(flow, "m3/s");

}

link = cp[nx-1].Link();
link.FlowRate(-flow, "m3/s");

// Time marching loop.
while (true) {

double deltat = 1e99, deltat_world;
int nerror = 0;

#pragma omp parallel for reduction(min : deltat) schedule(static, chunk_size)
for (int i=0; i<nx; i++)

deltat = std::min(deltat, cp[i].ReportTimeStep());
MPI_Allreduce(&deltat, &deltat_world, 1,

MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD);

#pragma omp parallel for reduction(+ : nerror) schedule(static, chunk_size)
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTimeStep(deltat_world)) nerror++;
if (nerror)

return exit_client(0);

for (int i=0; i<nx; i++)
for (int l=0; l<cp[i].nLinks(); l++)

152



Hybrid Parallel Computing

nerror += cp[i].Link(l).MpiUpdateLink();
if(nerror)

return exit_client(-1);

#pragma omp parallel for reduction(+ : nerror) schedule(static, chunk_size)
for (int i=0; i<nx; i++)

if (cp[i].AdvanceTransport()) nerror++;
if (nerror) return exit_client(-1);

#pragma omp parallel for reduction(+ : nerror) schedule(static, chunk_size)
for (int i=0; i<nx; i++)

if (cp[i].AdvanceHeatTransport()) nerror++;
if (nerror) return exit_client(-1);

#pragma omp parallel for reduction(+ : nerror) schedule(dynamic)
for (int i=0; i<nx; i++)

if (cp[i].AdvanceChemical()) nerror++;
if (nerror) return exit_client(-1);

write_results(cp, nx, delta_years, next_output);
}

// Never gets here.
return 0;

}

153



154



Appendix: ChemPlugin Setup

This appendix describes how to set up a client program to use ChemPlugin objects.
Specifically, we discuss installing the software and how to include ChemPlugin objects
in the client program.

A.1 Preliminaries
To begin, you need to install a version of the GWB software that includes the ChemPlugin
object. You also need to locate or install on your computer an appropriate software
development environment.

A.1.1 Install ChemPlugin
Install ChemPlugin by double-clicking on the installer for an appropriate version of the
GWB. You will be asked to choose between a 32-bit or a 64-bit version of the software.
The choice is significant as the client program can only access the ChemPlugin library
if the client program is built for the same bit version.

A 64-bit installation is most common, because it produces apps that run more
quickly and with fewer memory constraints than 32-bit apps. The 32-bit version of the
ChemPlugin object, on the other hand, is up to about 20% smaller in terms of its
memory footprint, since the memory addresses it holds are half the size of those in
the 64-bit object.

You can install both the 32-bit and 64-bit versions by running the installer twice. The
second time, be sure to uncheck the flag for automatically uninstalling the first version.

The 64-bit version of ChemPlugin is installed by default under “C:\Program
Files\ChemPlugin”,and the32-bit versionunder “C:\ProgramFiles (x86)\ChemPlugin”.
If you install ChemPlugin somewhere else, you need to keep track of the installation
directory, because you will need to reference it when setting up the development
environment.

Within the top level of the installation directory—i.e., “C:\Program Files\
ChemPlugin”— you will find a file “chemplugin.dll”, which is the link library containing
the ChemPlugin object itself. You will also find file “ChemPlugin.lib”, which is a map
of the library used by the link editor.

The cluster computing version of the ChemPlugin library is contained in file
“chemplugin_mpi.dll” on Windows, or “chemplugin_mpi.so” under Linux.

155



ChemPlugin User’s Guide

The ChemPlugin wrapper files (which provide the link between the client program
and ChemPlugin library), are installed within subdirectory “src” within the installation
directory. The wrapper files are:

C++ “ChemPlugin.h”
FORTRAN “ChemPlugin.f90”
Python “ChemPlugin.py”,

A client program written in C++ pulls in the wrapper file “ChemPlugin.h”, a FORTRAN
client references “ChemPlugin.f90”, and so on.

A.1.2 Launch development environment
You need to check that a development environment for the language in which your
client program is written is installed on your computer. You might need to install a C++
or FORTRAN compiler, for example, and its associated link editor. A few common
choices include:

C++ FORTRAN Link editor

Intel icl ifort xilink
Microsoft cl — cl
Gnu gcc gfortran ld

You might alternatively install a Python interpreter.
In any case, you can open the development environment as a command line prompt,

or work from the Windows command line prompt. We’ll assume in the sections below
that you are working from the command line.

You may prefer to work within a GUI development environment, such as Visual
Studio, rather than from the command prompt. The details of doing so differ depending
on the environment you choose, but the principles are the same as working from the
command line.

A.2 Running a Client Program
To show how to run client programs written in the various languages ChemPlugin
supports, we in this section take as an example program “RTM1” from the
Reactive Transport Model chapter. The versions of program “RTM1” can be found on
the ChemPlugin.GWB.com website, or in the “CPI_clients” subfolder of the ChemPlugin
installation directory.

Regardless of the language in use, Windows needs to know where to find the
ChemPlugin library “chemplugin.dll”, and various other libraries that library depends
on. To accomplish this, we need to append the name of the installation directory to
the “PATH” environmental variable. Depending on the version of the GWB software
installed, the path may be “C:\Program Files\ChemPlugin”, as assumed here, or
“C:\Program Files\Gwb”.

You can modify the copy of PATH used computer-wide under Windows from the
Control Panel. Alternatively, from the command line environment, issuing the command

156



ChemPlugin Setup

// For 64-bit app
set path=C:\Program Files\ChemPlugin;%path%

OR

//For 32-bit app
set path=C:\Program Files (x86)\ChemPlugin;%path%

sets the variable locally, for the current environment only.

A.2.1 C++
Invoking the Intel compiler “icl”, the command

icl -c RTM1.cpp -I"C:\Program Files\ChemPlugin\src"

compiles the program, looking to resolve the file “ChemPlugin.h” in “C:\Program
Files\ChemPlugin\src”. The compilation step produces an object file “RTM1.obj” that
can be linked against the “ChemPlugin.lib” map with the command

xilink RTM1.obj "C:\Program Files\ChemPlugin\ChemPlugin.lib"

The link step produces the executable program “RTM1.exe”, which can be run, as
shown in the next section.

In the case of “icl”, the compiling and linking can be combined into a single step
with the command

icl RTM1.cpp -I"C:\Program Files\ChemPlugin\src"
"C:\Program Files\ChemPlugin\ChemPlugin.lib"

Again, the executable is written to “RTM1.exe”.
Compiling an OpenMP program such as “RTM2.cpp”, described in the Multithreading

chapter, requires an additional keyword in order to produce a multithreaded executable.
Under the Intel environment, the command to compile this client is

icl -c RTM2.cpp -Qopenmp -I"C:\Program Files\ChemPlugin\src"

and the command

icl RTM2.cpp -Qopenmp -I"C:\Program Files\ChemPlugin\src"
"C:\Program Files\ChemPlugin\ChemPlugin.lib"

compiles and links the client in one step.
Running the program is simply a matter of typing in the name of the application

157



ChemPlugin User’s Guide

rtm1

or double-clicking on “rtm1.exe” in Windows Explorer.

A.2.2 FORTRAN
Invoking the Intel compiler “ifort”, the command

ifort RTM1.f90 -I"C:\Program Files\ChemPlugin\src"
"C:\Program Files\ChemPlugin\ChemPlugin.lib"

compiles the client and links the ChemPlugin library. It produces the executable
“RTM1.exe”.

Run the program by typing the name of the application

rtm1

or double-clicking on “rtm1.exe” in Windows Explorer.

A.2.3 Python
To import the ChemPlugin class in a Python script, it needs to know the location of
“ChemPlugin.py” installed in the "src" directory of ChemPlugin installation. This is most
easily accomplished by selecting the option for “Set user PATH and PYTHONPATH
environment variables” when installing GWB.

PYTHONPATH can also be set manually with the commands

# Add the location of the Python wrapper file ChemPlugin.py
# to PYTHONPATH environment variable
set PYTHONPATH=C:\Program Files\ChemPlugin\src;%PYTHONPATH%

You can now run the example from the command line:

# run the example with Python
python RTM1.py

158



Appendix: Member Functions

This chapter describes the ChemPlugin member functions. The member functions
allow a client to control instances of the ChemPlugin class. A client uses member
function “Config()”, for example, to send configuration commands to an instance.

Given a reference “cp” to a ChemPlugin instance, the statement

// Syntax for C++ or Python
cp.Config("pH = 5");

! FORTRAN
Config(cp, "pH = 5")

passes a command telling instance “cp” to set initial pH to 5.
The ChemPlugin class works together with a class named CpiLink that represents

connections between pairs of ChemPlugin instances. CpiLink carries member functions
of its own. Whereas the ChemPlugin member functions act on ChemPlugin instances
individually, CpiLink’s member functions act on connections between ChemPlugin
instances.

For example,

// Syntax for C++
int cpi.Config(. . . )
int link.FlowRate(. . . )

We recognize “Config()” as a member of the ChemPlugin class and “FlowRate” as a
member of class CpiLink.

Many of the member functions return an integer. In these cases, the return value is
zero if the operation was successful; a non-zero value indicates the operation failed.
In the latter case, diagnostic messages are generally written to the instance’s console
output (see Console messages in the Overview chapter of this guide).

In the following subsections, we will discuss the functionality and syntax of each
member function for all supported languages separately.

159



ChemPlugin User’s Guide

B.1 C++
Create an instance called “cp” of Chemplugin using the object’s constructor

ChemPlugin cp;

The constructor can accept two optional arguments, as described in the Overview
chapter. The first argument defines the console output stream, whereas the second
is used to set option flags. For example, the statement

ChemPlugin cp("stdout", "-d mythermo.tdat -s mysurface.sdat");

creates an instance that sends its console output to the standard output,
takes thermodynamic data from “mythermo.tdat”, and reads surface data from
“mysurface.sdat”.

The cluster computing version of ChemPlugin accepts as an optional third argument
the instance’s rank, which identifies the client copy responsible for the instance.
Setting the argument, you conflate the constructor and “MpiAssign()” calls into a single
statement.

Note that any member function that accepts a character pointer (char*) as an
argument can also accept a C++ standard string. Hence, the statements

ChemPlugin cp;
double pH = 9;
std::string command = "pH = " + std::to_string(pH);
cp.Config(command);

serve the same purpose as

ChemPlugin cp;
double pH = 9;
char command[128];
sprintf(command, "pH = %f", pH);
cp.Config(command);

If for some reason you wish to disable acceptance of C++ standard strings, use

#define ALLOW_STD_STRING 0
#include "ChemPlugin.h"

in the client’s header.

160



Member Functions

B.1.1 Configuring and initializing instances
Member functions “Config()” and “Initialize()” let a client configure a ChemPlugin
instance and prepare it for the start of a reaction simulation.

B.1.1.1 Config()
Syntax:

int cpi.Config(const char* command)

Use member function “Config()” to pass configuration commands to a
ChemPlugin instance. The configuration commands and their syntax are listed
in the Configuration Commands chapter of this guide. Examples:

char *cmd = "pH = 5";
cp.Config(cmd);
cp.Config("Na+ = 1 mmol/kg");

A client can pass multiple commands with a single function call, or continue a
command onto another call

cp.Config("Na+ = 1 mmol/kg; Cl- = 1 mmol/kg");
cp.Config("kinetic Quartz \");
cp.Config("rate_con = 2e-12, surface = 1000");

if it separates commands with semicolons, and marks incomplete commands with a
trailing backslash.

A zero-value return indicates the command processed successfully.

B.1.1.2 Initialize()
Syntax:

int cpi.Initialize()
int cpi.Initialize(double end_time)
int cpi.Initialize(double end_time, const char* units)

The “Initialize()” member function triggers an instance to calculate its initial condition,
including the distribution of mass across the various chemical species, and to prepare
the instance to begin time marching.

The member function is commonly called without arguments, but the client can use
the call to specify the end time of the simulation. For example, the statement

cp.Initialize(10.0, "years");

has the same effect as

161



ChemPlugin User’s Guide

cp.Config("time end = 10 years");
cp.Initialize();

An end time of zero is ignored, and the default unit for time is seconds. A non-zero
return indicates the instance was unable to initialize. In this case, diagnostic messages
are written to the instance’s console output.

B.1.2 Linking instances
Member function “Link()” creates a link connecting two ChemPlugin instances, functions
“Unlink()” and “ClearLinks()” remove links that have been created, and the function
“nLinks()” reports the number of existing links. Similarly, function “Outlet()” creates
an open-ended link from a ChemPlugin instance, and “nOutlets()” reports how many
such links exist.

A client can create any number of links between two instances. For example, you
might wish to create a link carrying fluid from an instance “cp1” to another, “cp2”. The
client could then create a second link to account for the possibility of back-flow.

Each of the functions in this section are reciprocal in operation. In other words,
if a client links “cp2” to “cp1”, both instances know about the link. You should then
link “cp1” to “cp2” only if you wish to spawn a second link between the instances.
Similarly, when the client unlinks “cp2” from “cp1”, both instances are aware the link
has been removed.

B.1.2.1 Link()
Syntax:

CpiLink cpi.Link(ChemPlugin another_cpi)
CpiLink cpi.Link()
CpiLink cpi.Link(int index)

The “Link()” member function connects two ChemPlugin instances. For example, the
statements

ChemPlugin cp1, cp2;
cp1.Link(cp2);

link two ChemPlugin instances, “cp1” and “cp2”. Once this statement is executed,
there is no need to execute the reciprocal operation

cp2.Link(cp1);

Doing so, in fact, would create an additional link.
The member function returns a reference to the link, which a client can store for

later operations. For example, the statements

162



Member Functions

CpiLink link1 = cp1.Link(cp2);
link1.FlowRate(0.2, "m3/s");

set a flow rate of 0.2 m3 s�1 from “cp2” to “cp1”.
When a client calls “Link()” without an argument, the function creates an open link

that functions as a free outlet. This syntax is an alternative to the “Outlet()” member
function described in the next subsection.

When a client passes “Link()” an index, rather than a reference to a ChemPlugin
instance, the member function returns a reference to the link in question. If, for example,
we create two links

cp1.Link(cp2);
cp1.Link(cp3);

the links will have indices 0 and 1, respectively, assuming no earlier links exist. Then,
the statement

CpiLink link1 = cp1.Link(1);

returns a reference to the second link, to be stored in “link1”.

B.1.2.2 Outlet()
Syntax:

CpiLink cpi.Outlet()

The “Outlet()” member function creates an open link that functions as a free outlet. A
call to “Outlet()” is the same as calling “Link()” without an argument.

For example, the statement

CpiLink link1 = cp.Outlet();

creates an open link to which “link1” refers.
Note: Water can flow outward along the link, away from “cp”, but not inward toward

the instance; no first-order transport, such as diffusion or heat conduction, is possible
across an open link.

B.1.2.3 Unlink()
Syntax:

int link.Unlink()
int cpi.Unlink(ChemPlugin another_cpi)
int cpi.Unlink(int index)

163



ChemPlugin User’s Guide

A client can remove a link between two nodes using the “Unlink()” member function
of either the CpiLink or ChemPlugin class. In the latter case, it can refer to the link
either by index or reference to the linked instance.

Some examples:

ChemPlugin cp1, cp2;
CpiLink link1 = cp1.Link(cp2);
... some code ...
link1.Unlink();

or
cp1.Unlink(cp2);

or
cp1.Unlink(0);

Each of the three examples serves the same purpose. A zero-value return indicates
success.

B.1.2.4 ClearLinks()
Syntax:

int cpi.ClearLinks()

The “ClearLinks()” member function removes all links to a ChemPlugin instance.
Example:

cp.ClearLinks()

A zero-value return indicates success.

B.1.2.5 nLinks()
Syntax:

int cpi.nLinks()
int cpi.nLinks(ChemPlugin another_cpi)

Member function “nLinks()” returns the number of links that have been made to a
ChemPlugin instance.

When a client calls the function without an argument, it reports the total number of
links to the instance, including open links. For example, the statements

cp1.Link(cp2);
cp1.Link(cp3);
int m = cp1.nLinks();

result in a value of 2 being stored in variable “m”.

164



Member Functions

Calling the function with a second ChemPlugin instance as an argument yields
the number of links to the second instance. Continuing the previous example, the
statement

... cont’d ...
int n = cp1.nLinks(cp3);

returns to “n” a value of one.

B.1.2.6 nOutlets()
Syntax:

int cpi.nOutlets()

Member function “nOutlets()” returns the number of open links connected to a
ChemPlugin instance.

B.1.3 Transport across links
Member functions “FlowRate()”, “Transmissivity()”, and “HeatTrans()” control how
chemical mass and heat energy are transported across links. In each case, calling
the member function with a numerical value and optionally specifying units sets the
quantity in question. Calling the function without a numerical value, in contrast, returns
the current setting in the units specified, or in the default units.

B.1.3.1 FlowRate()
Syntax:

int link.FlowRate(double flow)
int link.FlowRate(double flow, const char* unit)
double link.FlowRate()
double link.FlowRate(const char* unit)

Use member function “FlowRate()” to set the rate at which water flows across a link.
The default unit for flow rate is m3 s�1, but a client can specify any other unit of
volume flow, as listed in the Units Recognized appendix.

Calling “FlowRate()” without a numeric argument returns the current value for flow
rate, as set by the most recent call to the function. When a link is created, the flow
rate is guaranteed to be zero-value initially.

By ChemPlugin convention, flow into an instance is positive, and outward flow is
negative in sign. Hence, the statements

CpiLink link1 = cp1.Link(cp2);
link1.FlowRate(2.0e6, "cm3/s")
flow = link1.FlowRate()

165



ChemPlugin User’s Guide

result in a value of 2.0 being stored in variable “flow”, since this quantity is 2�106

cm3 s�1, expressed in m3 s�1. In this case, flow is positive, so water flows from “cp2”
to “cp1”.

B.1.3.2 Transmissivity()
Syntax:

int link.Transmissivity(double trans)
int link.Transmissivity(double trans, const char* unit)
double link.Transmissivity()
double link.Transmissivity(const char* unit)

The“Transmissivity()”member functionsets the transmissivitydescribingmass transport
across a link by first-order processes, such as diffusion, dispersion, and turbulent
mixing. The definition of the mass transmissivity is described in this User’s Guide, in
the Flow and Transport chapter.

A client sets a value in units of m3 s�1 by default, but it can specify other units, as
described in the Units Recognized appendix. When a client calls the function without
a numeric argument, the function returns the currently set value. Upon creating a link,
the initial transmissivity is guaranteed to be zero-value.

B.1.3.3 HeatTrans()
Syntax:

int link.HeatTrans(double trans)
int link.HeatTrans(double trans, const char* unit)
double link.HeatTrans()
double link.HeatTrans(const char* unit)

The “HeatTrans()” member function sets the thermal transmissivity describing the
transport of heat energy across a link by first-order processes, such as conduction,
thermal dispersion, and turbulent mixing. Thermal transmissivity is described in the
Flow and Transport chapter in this User’s Guide.

A client sets a value in units of J K�1 s�1 by default, but it can specify other units, as
described in the Units Recognized appendix. When a client calls the function without
a numeric argument, the function returns the currently set value. Upon creating a link,
the initial thermal transmissivity is guaranteed to be zero-value.

B.1.4 Time marching loop
Member functions “ReportTimeStep()”, “AdvanceTimeStep()”, “AdvanceTransport()”,
“AdvanceHeatTransport()”, and “AdvanceChemical()” work together to make up a time
marching loop. The function “ExtendRun()” can be used to prolong a time marching
loop to a new end time, once the initial loop is complete.

166



Member Functions

B.1.4.1 ReportTimeStep()
Syntax:

double cpi.ReportTimeStep()
double cpi.ReportTimeStep(char *unit)

Member function “ReportTimeStep()” returns the largest time step an instance may
take if it is to maintain numerical stability and honor any constraints the client program
may have prescribed. The limiting time step is by default returned in seconds, but the
optional argument allows a client to specify an alternative unit of time.

A client program, upon beginning a pass through a time marching loop, will in general
query each ChemPlugin instance the program has spawned. The client program should
then take the least of the values returned and use that value as the length �t of the
current time step.

B.1.4.2 AdvanceTimeStep()
Syntax:

int cpi.AdvanceTimeStep(double deltat)
int cpi.AdvanceTimeStep(double deltat, char *unit)

Member function “AdvanceTimeStep()” moves the current time level carried in an
instance forward by the time step specified, adds or removes simple reactants, and
adjusts sliding reactants. By default, the time step is provided in seconds, but the
optional second argument lets a client set an alternative unit of time.

B.1.4.3 AdvanceTransport()
Syntax:

int cpi.AdvanceTransport()

Member function “AdvanceTransport()” triggers the instance to evaluate the effect of
mass transport on the instance’s chemical composition over the course of the current
time step.

B.1.4.4 AdvanceHeatTransport()
Syntax:

int cpi.AdvanceHeatTransport()

Member function “AdvanceHeatTransport()” triggers the instance to evaluate the effect
of heat transport on the instance’s temperature over the course of the current time
step.

167



ChemPlugin User’s Guide

B.1.4.5 AdvanceChemical()
Syntax:

int cpi.AdvanceChemical()

Member function “AdvanceChemical()” causes the instance to evaluate the effect of
kinetic and equilibrium reactions on an instance’s chemical state over the course of
the current time step.

B.1.4.6 SlideFugacity()
Syntax:

int cpi.SlideFugacity(const char* gas_name, double value);

Use member function “SlideFugacity()” to adjust the fugacity of a fixed-fugacity gas
within an instance, once the instance has been initialized. The “gas_name” is the name
of the gas in question (e.g., “CO2(g)”) and “value” is the revised fugacity of that gas.

In order to use the “SlideFugacity()” function, the fugacity of the gas in question
must be fixed in the instance configuration. For example:

cpi.Config("fix fugacity CO2(g)");

Note the function, despite its name, can be used also to adjust the fixed activity of
an aqueous species, or an activity ratio that has been fixed.

B.1.4.7 SlideTemperature()
Syntax:

int cpi.SlideTemperature(double temperature, const char* unit);

Use member function “SlideTemperature()” to adjust an instance’s temperature, once
it has been initialized. The “unit” field is optional and defaults to “C”.

Do not use “SlideTemperature()” to set an instance’s initial temperature; instead, call

cpi.Config("temperature = 45 C");

to configure the instance at the desired temperature, before initializing it.

B.1.4.8 ExtendRun()
Syntax:

int cpi.ExtendRun(double add_time)
int cpi.ExtendRun(double add_time, const char* unit)

Use member function “ExtendRun()” to extend a reaction simulation, once time marching
is complete. The first argument is the amount of time to be added to the simulation,

168



Member Functions

in the unit specified as the second argument, or in seconds, by default. The function
returns a zero value upon successful extension of the run.

By extending a simulation’s time range, you extend the range in reaction progress
to be traversed. Tracing a reaction path that spans 10 years, for example, carries the
reaction progress variable � from zero to one. If you were to then add 20 years to the
simulation, � would, over the course of the second round of time marching, increase
from one to three.

B.1.5 Retrieving results
A client program uses the “Report()”, “Report1()”, “Report1i()”, and “Report1c()” member
functions to gather information about the current state of a ChemPlugin instance.

B.1.5.1 Report()
Syntax:

int cpi.Report(void *target, const char* keywords, const char *unit)

Use member function “Report()” to retrieve calculation results from a ChemPlugin
instance. Here, “target” is the address in memory to which the results are to be written.
The “keywords” argument identifies the specific result or results to be written, and the
optional “unit” argument sets the unit in which the results are to be cast. The function
returns the number of values copied to “target”.

Whenever the function is unable to fulfill a request, such as when an impossible
unit conversion has been requested, it fills the corresponding location or locations in
“target” with parameter “ANULL”, defined in “ChemPlugin.h”.

The options for specifying “keywords” are listed in the Report Function appendix to
this User’s Guide, and the available units are shown in the Units Recognized appendix.

If a client passes NULL as the “target” argument, “Report()” returns the number of
values scheduled to be copied, without actually copying the values.

“Report()” is used to retrieve an array of data, such as a vector of the concentrations
of a group of aqueous species. To retrieve a single value of type double, such as the pH
or a species’ concentration, a client may instead call the shorter “Report1()” function.
For a single integer or character string, use “Report1i()” or “Report1c()”, respectively.

Please refer to the Retrieving Results chapter of this User’s Guide for detailed
information about the “Report()” and “Report1()” functions, including several examples
of their use.

B.1.5.2 Report1(), Report1i(), and Report1c()
Syntax:

double cpi.Report1(const char* keywords, const char *unit)
int cpi.Report1i(const char* keywords)
char* cpi.Report1c(const char* keywords)

169



ChemPlugin User’s Guide

Use member function “Report1()” to retrieve from a ChemPlugin instance a single
value of type double, such as the pH or the concentration of a specific aqueous
species. The “keywords” argument identifies the specific result or results to be written,
and the optional “unit” argument sets the unit in which the results are to be cast.
Similarly, “Report1i()” and “Report1c()” retrieve an integer value and the pointer to a
character string, respectively.

The options for specifying “keywords” are listed in the Report Function appendix
to this User’s Guide, and the available units are shown in the Units Recognized
appendix. The function returns the retrieved value.

When “Report1()” fails, it returns a value of “ANULL”, defined in “ChemPlugin.h”;
“Report1i()” returns “ANULL” cast as an integer, and “Report1c()” returns a NULL
pointer.

Please refer to the Retrieving Results chapter of this User’s Guide for detailed
information about the “Report()” and “Report1()” functions, including several examples
of their use.

B.1.6 Output streams
A client program controls the output streams from a ChemPlugin instance with member
functions “Console()”, “PrintOutput()”, “PlotHeader()”, “PlotBlock()”, and “PlotTrailer()”.
The first function is described in the Overview chapter of this User’s Guide, and use
of the latter four functions is explained in detail in the Direct Output chapter.

It is important avoid allowing more than one ChemPlugin instance to write into
the same dataset. In such a situation, the output from the instances would appear
intermingled and probably unintelligible.

B.1.6.1 Console()
Syntax:

int cpi.Console()
int cpi.Console(const char* stream)

Member function “Console()” controls where an instance’s console output is directed.
Console output consists of routine messages an instance produces as it initializes
and undetakes calculations, as well as any warning and error messages that may be
generated. By default, a ChemPlugin instance does not produce console output.

The function’s optional argument is the target for the console stream, which may be
“stdout”, “stderr”, or the name of a dataset. When a client calls the function without an
argument, or with NULL or an empty string as the argument, output to the console
stream is disabled. A client may enable, disable, or redirect an instance’s console
output at any time.

A client can direct an instance’s console output at declaration:

ChemPlugin cp("stdout");

170



Member Functions

Since an instance produces no console output until directed to do so, this is the only
way to capture messages produced when an instance comes into scope and initializes.

B.1.6.2 PrintOutput()
Syntax:

int cpi.PrintOutput()
int cpi.PrintOutput(const char *basename)
int cpi.PrintOutput(const char *basename, const char *label, bool rewind)

Calling member function “PrintOutput()” triggers a ChemPlugin instance to append a
data block to a print-format dataset.

The optional argument sets the file’s base name. The full file name is the base
name combined with any suffix that may be set. For example, the calls

cp.Config("suffix _1");
cp.PrintOutput("myPrint.txt")

cause a block of output to be written to dataset “myPrint_1.txt”.
When a client calls “PrintOutput()” without an argument, the instance appends a

data block to whatever file is open for print-format output. If none is open, the instance
writes to “ChemPlugin_output.txt”.

The optional “label” argument allows the program to pass an optional character
string to be written into the print dataset, at the head of the data block. For example,

cp.PrintOutput(NULL, "Initial condition");

would write the string “Initial condition” and then a data block to the currently open
dataset.

Passing a true (non-zero) value as the optional third argument causes the instance
to rewind the print-format dataset and write a data block at the head of the file. Use

cp.PrintOutput(NULL, NULL, true);

to write a data block at the head of the currently open dataset.

B.1.6.3 PlotHeader()
Syntax:

int cpi.PlotHeader()
int cpi.PlotHeader(const char* basename)

Member function “PlotHeader()” opens and initializes a plot-format dataset by writing
header information to it.

A client may specify the file’s base name as a character string; the full name is the
base name combined with the suffix, if one has been set. If a client calls the function

171



ChemPlugin User’s Guide

without an argument, it writes to any file that may be open for plot output. If none is
open, the function opens “ChemPlugin_plot.gtp”, accounting for a suffix, if set. The
“.gtp” extension identifies the file as Gtplot input.

B.1.6.4 PlotBlock()
Syntax:

int cpi.PlotBlock()

Member function “PlotBlock()” appends to the currently open plot-format dataset a
block of data representing an instance’s current state. The dataset must have been
initialized with a call to “PlotHeader()”.

B.1.6.5 PlotTrailer()
Syntax:

int cpi.PlotTrailer()

Member function “PlotTrailer()” completes the plot-format output dataset by writing the
trailing data structure. A trailer is required by program Gtplot before it can read the
dataset.

When functions “ReportTimeStep()” and “AdvanceTimeStep()” detect time marching
is complete, they automatically write a trailer to any open plot dataset, and close the
dataset. It is not necessary to write a trailer, then, at the end of a time marching loop.

Significantly, a client may continue to append data blocks to a plot dataset, even after
it has used “PlotTrailer()” to write a trailer to it. The additional data blocks overwrite the
trailer data, so the client needs to call “PlotTrailer()” once again to close the dataset.

B.1.7 Convenience
B.1.7.1 Version()
Syntax:

const char* cpi.Version()

Member function “Version()” returns a pointer to a character string identifying the
version of ChemPlugin in use.

B.1.7.2 ConvertUnit()
Syntax:

double cpi.ConvertUnit(double value, const char* old_unit, const char* new_unit)
double cpi.ConvertUnit(double value, const char* old_unit, const char* new_unit,

double mw, double mv, double z)
double cpi.ConvertUnit(double value, const char* old_unit, const char* new_unit,

double mw, double mv, double z,
double wmass, double smass, double dens, double vbulk)

172



Member Functions

Member function “ConvertUnit” converts values from one unit to another. The
Units Recognized appendix to this User’s Guide lists the units available for conversion.

There are three variants to the function. In the simplest variant, a client passes
only the value to be converted, along with the old and new units, and the function
returns the converted value.

Unit conversions involving mass and concentration may require additional
information. To convert concentration from mmol/kg to mg/kg, for example, the
function needs to know molecular weight. For other conversions, the function may
require the molar volume, electrical charge on the species (to convert to and from
meq/kg, for example), the mass of solvent water, the solution mass, the fluid density,
and the bulk volume of the system.

In the second variant of the function call, a client also specifies the mole weight
“mw” in g mol�1, the mole volume “mv” in cm3 mol�1, and the ion charge “z” on the
species in question. The function takes water mass (kg), solution mass (kg), density
(g cm�3), and bulk volume (cm3) from the current state of the ChemPlugin instance.

In the final form, the client specifies the latter four variables, in the units listed. This
variant of the function call can be helpful because it can be used before a client has
calculated the initial system, by calling “Initialize()”.

B.1.8 Cluster computing
The MPI version of ChemPlugin includes a number of C++ member functions specific
to cluster computing.

B.1.8.1 MpiAssign()
Syntax:

int cpi.MpiAssign(int rank)

Use the “MpiAssign()” member function to associate the stub of a ChemPlugin instance
with a specific client copy. If argument “rank” is the same as the rank of the client
copy calling the function, the stub is expanded within that copy into a full ChemPlugin
instance, and that copy becomes responsible for calculations involving the instance.

For example,

cp.MpiAssign(0);

assigns instance “cp” to the first client copy, which has a rank of zero. Afterward,
“cp” will reference a full ChemPlugin instance on the first client copy, whereas on the
remaining client copies, it will refer to a stub of that instance.

As an alternative to calling MpiAssign(), you can assign rank to a ChemPlugin
object using the ChemPlugin constructor, by setting the rank as the optional third
argument; see the Cluster Computing chapter. Behavior in this case is the same as
if the constructor and “MpiAssign()” had been called serially.

173



ChemPlugin User’s Guide

B.1.8.2 MpiOnRank()
Syntax:

int cpi.MpiOnRank()

The “MpiOnRank()” member function returns one when called from a client copy of
the same rank as the instance, and zero otherwise.

For example, if instance “cp” is assigned to the first client copy

int is_local = cp.MpiOnRank()

the value of “is_local” on that copy will be one, but zero on the remaining copies.

B.1.8.3 MpiRank()
Syntax:

int cpi.MpiRank()

Member function “MpiRank()” returns the rank of the client copy to which an instance
is assigned.

For example, if instance “cp” is assigned to the first client copy, executing the
statement

int rank = cp.MpiRank()

will leave “rank” with a value of zero.

B.1.8.4 MpiReport()
Syntax:

int cpi.MpiReport(void *target, const char* keywords, const char *unit)
int cpi.MpiReport(void *target, const char* keywords, const char *unit, int collector)

A call to “MpiReport()” with two or three parameters behaves identically to calling
“Report()”, except that it can retrieve information from any ChemPlugin instance,
rather than only those local to the client copy making the call. You use this form of
the function call when every client copy needs to retrieve information about all of the
ChemPlugin instances considered by the communication group.

When you call “MpiReport()” for an instance “cp”, the client copy responsible for
“cp” broadcasts information to the other client copies, which wait to receive the data.
As such, the client copies need to call the function synchronously, i.e., in the same
sequence. The function may not be called within a multithreaded loop.

The optional fourth parameter is used to specify the rank of a client copy that will
collect the result. You use this form of the function call when you would like a single
client copy to assemble information from all of the ChemPlugin instances considered
by the communication group.

174



Member Functions

The function when used in this way does work on only the collector copy and
the client copy responsible for “cp”. Called from those copies, the function writes
the requested information to the target and returns the number of values written. Of
course, the responsible copy may be the same as the collector copy. For the remaining
client copies, the function writes no data and returns a value of zero; since nothing is
written, no memory need be allocated for “target”.

Setting the collector to “GLOBAL” is equivalent to omitting the fourth argument.

B.1.8.5 MpiReport1(), MpiReport1i(), MpiReport1c()
Syntax:

double cpi.MpiReport1(const char* keywords, const char *unit)
int cpi.MpiReport1i(const char* keywords)
char* cpi.MpiReport1c(const char* keywords)

double cpi.MpiReport1(const char* keywords, const char *unit, int collector)
int cpi.MpiReport1i(const char* keywords, int collector)
char* cpi.MpiReport1c(const char* keywords, int collector)

Functions “MpiReport1()”, “MpiReport1i()”, and “MpiReport1c()” are the counterparts
to “MpiReport()” for returning, respectively, a single floating point or integer value, or
a character string.

Called with one or two arguments, the functions behave identically to “Report1()”,
“Report1i()”, and “Report1c()”,except theycanretrieve information fromanyChemPlugin
instance, rather than only those local to the client copy making the call. When you
set a collector copy, the functions let you assemble information from any ChemPlugin
instance within a single client copy, just as “MpiReport()” does. Setting the collector
to “GLOBAL” is equivalent to omitting the third argument.

The “MpiReport()” family functions are synchronous and hence need to be called by
each client copy in the same sequence; they may not be called within a multithreaded
loop.

B.1.8.6 MpiUpdateLink()
Syntax:

int link.MpiUpdateLink()
int link.MpiUpdateLink(int task)

In a cluster computing application, a local ChemPlugin instance may be linked to an
instance assigned to a different client copy. In this case, the corresponding CpiLink
object caches information about the foreign instance, making it available to the local
copy.

Whenever the state of the foreign instance has changed in an MPI application,
its cached information needs to be updated before you call AdvanceTransport() or
AdvanceHeatTransport(). The “MpiUpdateLink()” member function of the CpiLink object
serves to update the cache.

175



ChemPlugin User’s Guide

“MpiUpdateLink()” needs to be called by every client copy in the communication
group, and in the same sequence by each copy. The function may not be called from
within a multithreaded loop.

A zero-value return from the function indicates success. Note that all client copies
need to call this function in the same sequence, to avoid the possibility of entering a
gridlocked state.

In specialized circumstances you may wish use the “task” argument to control which
parts of the cache are updated. The argument may be

“CpiLink::EVERYTHING” updates all of the below, the default

“CpiLink::TEMPERATURE” updates temperature and thermal properties

“CpiLink::DENSITY” updates fluid density and viscosity

“CpiLink::CONCENTRATIONS” updates chemical and isotopic composition

“CpiLink::NODE” updates the position and extent of a linked instance

Options can be combined with the bitwise or operator, e.g., “CpiLink::TEMPERATURE
| CpiLink::DENSITY”.

An example:

ChemPlugin cp1(NULL, NULL, 0), cp2(NULL, NULL, 1);
CpiLink link1 = cp1.Link(cp2);
... some code ...
link1.MpiUpdateLink();

176



Member Functions

B.2 FORTRAN
Conventional syntax for calling an object’s member functions in Fortran, for example

err = Config(cp, "pH=5")

places the object in question, “cp” in this case, as the function’s first argument.
Compilers that honor the Fortran 2003 and later standards allow a second syntax

err = cp%Config("pH=5")

known as a type-bound procedure call that is understood more naturally to the object
oriented programmer.

ChemPlugin supports both syntaxes. The discussion below emphasizes the latter,
but except where noted you can convert to the conventional syntax by moving the
object’s reference to the first position in the argument list.

That said, a compiler may not recognize the new syntax where the object in question
is itself returned by a member function call. For example, you may not be able to cast
a call setting flow across a link

err = FlowRate(cp%Link(0), 0.2, "m3/s")

in the type-bound form

err = cp%Link(0)%FlowRate(0.2, "m3/s")

because the link in question is the result calling “cp%Link(0)”. You can, of course,
split the statement above across two lines of code, one a type-bound call to retrieve
the link and a second to set the flow rate.

B.2.1 Instantiation
Create a ChemPlugin instance “cp” by either using the pseudo-constructor function

TYPE(ChemPlugin) :: cp
cp = ChemPlugin()

or calling the constructor subroutine

TYPE(ChemPlugin) :: cp
CALL ChemPlugin(cp)

177



ChemPlugin User’s Guide

The constructor in either case can accept two arguments, as described in the Overview
chapter. The first argument defines the console output stream, whereas the second
is used to set option flags. For example, the statements

TYPE(ChemPlugin) :: cp
cp = ChemPlugin("stdout", "-d mythermo.tdat -s mysurface.sdat")

create an instance that sends its console output to the standard output,
takes thermodynamic data from “mythermo.tdat”, and reads surface data from
“mysurface.sdat”.

The cluster computing version of the “ChemPlugin()” constructor accepts as an
optional third argument the instance’s rank, which identifies the client copy responsible
for the instance. Setting the argument, you conflate the constructor and “MpiAssign()”
calls into a single statement.

Once instantiated, you can delete a ChemPlugin instance with

CALL destroy(cp)

which leaves “cp” as a dangling reference that can be assigned once again by calling
the constructor.

B.2.2 Configuring and initializing instances
Member functions “Config()” and “Initialize()” let a client configure a ChemPlugin
instance and prepare it for the start of a reaction simulation.

B.2.2.1 Config()
Syntax:

FUNCTION Config(plugin, command) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: plugin
CHARACTER(LEN=*), INTENT(in) :: command
INTEGER(C_INT) :: retval

Use member function “Config()” to pass configuration commands to a
ChemPlugin instance. The configuration commands and their syntax are listed
in the Configuration Commands chapter of this guide. Examples:

err = cp%Config("pH=5")
err = cp%Config("Na+ = 1 mmol/kg")

178



Member Functions

A client can pass multiple commands with a single function call, or continue a
command onto another call

err = cp%Config("Na+ = 1 mmol/kg; Cl- = 1 mmol/kg")

err = cp%Config("kinetic Quartz \")
err = cp%Config("rate_con = 2e-12, surface = 1000")

if it separates commands with semicolons, and marks incomplete commands with a
trailing backslash.

A zero-value return indicates the command processed successfully.

B.2.2.2 Initialize()
Syntax:

FUNCTION Initialize(plugin, time_end, units) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: plugin
REAL(8), INTENT(in), OPTIONAL :: time_end ! end time of the simulation
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: units
INTEGER(C_INT) :: retval

The “Initialize()” member function triggers an instance to calculate its initial condition,
including the distribution of mass across the various chemical species, and to prepare
the instance to begin time marching.

The member function is commonly called without arguments, but the client can use
the call to specify the end time of the simulation. For example, the statement

err = cp%Initialize(10.0, "years")

has the same effect as

err = cp%Config("time end = 10 years")
err = cp%Initialize()

An end time of zero is ignored, and the default unit for time is seconds. A non-zero
return indicates the instance was unable to initialize. In this case, diagnostic messages
are written to the instance’s console output.

B.2.3 Linking instances
Member function “Link()” creates a link connecting two ChemPlugin instances, functions
“Unlink()” and “ClearLinks()” remove links that have been created, and the function
“nLinks()” reports the number of existing links. Similarly, function “Outlet()” creates
an open-ended link from a ChemPlugin instance, and “nOutlets()” reports how many
such links exist.

179



ChemPlugin User’s Guide

A client can create any number of links between two instances. For example, you
might wish to create a link carrying fluid from an instance “cp1” to another, “cp2”. The
client could then create a second link to account for the possibility of back-flow.

Each of the functions in this section are reciprocal in operation. In other words,
if a client links “cp2” to “cp1”, both instances know about the link. You should then
link “cp1” to “cp2” only if you wish to spawn a second link between the instances.
Similarly, when the client unlinks “cp2” from “cp1”, both instances are aware the link
has been removed.

B.2.3.1 Link()
Syntax:

FUNCTION Link(cp1, cp2) RESULT(link)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp1
TYPE(ChemPlugin), INTENT(in), TARGET, OPTIONAL :: cp2
TYPE(CpiLink), INTENT(out) :: link

\\ OR

FUNCTION Link(cp, index) RESULT(link)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
INTEGER, INTENT(in) :: index
TYPE(CpiLink), INTENT(out) :: link

The “Link()” member function connects two ChemPlugin instances. For example, the
statements

TYPE(ChemPlugin) :: cp1, cp2
TYPE(CpiLink) :: newlink
newlink = cp1%Link(cp2)

link two ChemPlugin instances, “cp1” and “cp2”.
Once this statement is executed, there is no need to execute the reciprocal operation

newlink = cp2%Link(cp1)

Doing so, in fact, would create an additional link.
The member function returns a reference to the link, which a client can store for

later operations. For example, the statements

newlink = cp1%Link(cp2)
newlink%FlowRate(0.2, "m3/s")

set a flow rate of 0.2 m3 s�1 from “cp2” to “cp1”.

180



Member Functions

The conventional syntax for calling the “Link()” function is

err = Link(newlink, cp1, cp2)

In this case, references to the link to be created as well as the originating instance
are set out in the argument list.

When a client calls “Link()” with no arguments,

newlink = cp1%Link()

the function creates an open link that functions as a free outlet. This syntax is an
alternative to the “Outlet()” member function described in the next subsection.

When a client passes “Link()” an index, rather than a reference to a ChemPlugin
instance, the member function returns a reference to the link in question. If, for example,
we create two links

newlink1 = cp1%Link(cp2)
newlink2 = cp1%Link(cp3)

the links will have indices 0 and 1, respectively, assuming no earlier links exist. Then,
the statement

TYPE(CpiLink) :: link_ref
link_ref = cp1%Link(1)

returns a reference to the second link, to be stored in “link_ref”.

B.2.3.2 Outlet()
Syntax:

FUNCTION Outlet(cp) RESULT(link)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
TYPE(CpiLink), INTENT(out) :: link

The “Outlet()” member function creates an open link that functions as a free outlet.
A call to “Outlet()” is the same as calling “Link()” with no arguments, as discussed
previously.

For example, the statement

TYPE(CpiLink) :: newlink
newlink = cp1%Outlet()

creates an open link to which “newlink” refers. The conventional syntax is

err = Outlet(newlink, cp1)

181



ChemPlugin User’s Guide

Note: Water can flow outward along the link, away from “cp”, but not inward toward
the instance; no first-order transport, such as diffusion or heat conduction, is possible
across an open link.

B.2.3.3 Unlink()
Syntax:

FUNCTION Unlink(link) RESULT(retval)
CLASS(CpiLink), INTENT(in), TARGET :: link
INTEGER :: retval

\\ OR

FUNCTION Unlink(cp1, cp2) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp1
TYPE(ChemPlugin), INTENT(in), TARGET, OPTIONAL :: cp2
INTEGER :: retval

\\ OR

FUNCTION Unlink(cp1, index) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: plugin0
INTEGER, INTENT(in) :: index
INTEGER :: retval

A client can remove a link between two nodes using the “Unlink()” member function
on the CpiLink or ChemPlugin class. In the latter case, it can refer to the link either
by index or reference to the linked instance.

Some examples:

TYPE(ChemPlugin) :: cp1, cp2
TYPE(CpiLink) :: link1
link1 = cp1%Link(cp2)
... some code ...
err = link1%Unlink()

or
err = cp1%Unlink(cp2)

or
err = cp1%Unlink(0)

Each of the three examples serves the same purpose. A zero-value return indicates
success.

182



Member Functions

B.2.3.4 ClearLinks()
Syntax:

FUNCTION ClearLinks(cp) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
INTEGER :: retval

The “ClearLinks()” member function removes all links to a ChemPlugin instance.
Example:

err = cp%ClearLinks()

A zero-value return indicates success.

B.2.3.5 nLinks()
Syntax:

FUNCTION nLinks(cp1, cp2) RESULT(num_Links)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp1
TYPE(ChemPlugin), INTENT(in), TARGET, OPTIONAL :: cp2
INTEGER(C_INT) :: num_Links

Member function “nLinks()” returns the number of links that have been made to a
ChemPlugin instance.

When a client calls the function without an argument for “cp2“, it reports the total
number of links to the instance, including open links. For example, the statements

link = cp1%Link(cp2)
link = cp1%Link(cp3)
num_links = cp1%nLinks()

result in a value of 2 being stored in variable “num_links”.
Calling the function with a second ChemPlugin instance as an argument yields

the number of links to the second instance. Continuing the previous example, the
statement

... cont’d ...
num_links = cp1%nLinks(cp3)

returns to “num_links” a value of one.

183



ChemPlugin User’s Guide

B.2.3.6 nOutlets()
Syntax:

FUNCTION nOutlets(cp) RESULT(num_outlets)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
INTEGER(C_INT) :: num_outlets

Member function “nOutlets()” returns the number of open links connected to a
ChemPlugin instance.

B.2.4 Transport across links
Member functions “FlowRate()”, “Transmissivity()”, and “HeatTrans()” control how
chemical mass and heat energy are transported across links. In each case, calling
the member function with a numerical value and optionally specifying units sets the
quantity in question. Calling the function without a numerical value, in contrast, returns
the current setting in the units specified, or in the default units.

B.2.4.1 FlowRate()
Syntax:

!! To set the flow rate
FUNCTION FlowRate(link, flow, units) RESULT(retval)

CLASS(CpiLink), INTENT(in), TARGET :: link
REAL, INTENT(in), VALUE :: flow
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: units
INTEGER(C_INT) :: retval

\\ OR

!! To get the flow rate
FUNCTION FlowRate(link, units) RESULT(flow)

CLASS(CpiLink), INTENT(in), TARGET :: link
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: units
REAL :: flow

Use member function “FlowRate()” to set the rate at which water flows across a link.
The default unit for flow rate is m3 s�1, but a client can specify any other unit of
volume flow, as listed in the Units Recognized appendix.

Calling “FlowRate()” without a numeric argument returns the current value for flow
rate, as set by the most recent call to the function. When a link is created, the flow
rate is guaranteed to be zero-value initially.

184



Member Functions

By ChemPlugin convention, flow into an instance is positive, and outward flow is
negative in sign. Hence, the statements

TYPE(CpiLink) :: link1
Real :: flow
link1 = cp1%Link(cp2)
err = link1%FlowRate(2.0d6, "cm3/s")
flow = link1%FlowRate()

result in a value of 2.0 being stored in variable “flow”, since this quantity is 2�106

cm3 s�1, expressed in m3 s�1. In this case, flow is positive, so water flows from “cp2”
to “cp1”.

B.2.4.2 Transmissivity()
Syntax:

!! To set the mass transmissivity
FUNCTION Transmissivity(link, trans, units) RESULT(retval)

CLASS(CpiLink), INTENT(in), TARGET :: link
REAL, INTENT(in), VALUE :: trans
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: units
INTEGER(C_INT) :: retval

\\ OR

!! To get mass transmissivity
FUNCTION Transmissivity(link, units) RESULT(trans)

CLASS(CpiLink), INTENT(in), TARGET :: link
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: units
REAL :: trans

The“Transmissivity()”member functionsets the transmissivitydescribingmass transport
across a link by first-order processes, such as diffusion, dispersion, and turbulent
mixing. The definition of the mass transmissivity is described in this User’s Guide, in
the Flow and Transport chapter.

A client sets a value in units of m3 s�1 by default, but it can specify other units, as
described in the Units Recognized appendix. When a client calls the function without
a numeric argument, the function returns the currently set value. Upon creating a link,
the initial transmissivity is guaranteed to be zero-value.

185



ChemPlugin User’s Guide

B.2.4.3 HeatTrans()
Syntax:

!! To set the heat transmissivity
FUNCTION HeatTrans(link, trans, units) RESULT(retval)

CLASS(CpiLink), INTENT(in), TARGET :: link
REAL, INTENT(in), VALUE :: trans
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: units
INTEGER(C_INT) :: retval

\\ OR

!! To get mass transmissivity
FUNCTION HeatTrans(link, units) RESULT(trans)

CLASS(CpiLink), INTENT(in), TARGET :: link
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: units
REAL :: trans

The “HeatTrans()” member function sets the thermal transmissivity describing the
transport of heat energy across a link by first-order processes, such as conduction,
thermal dispersion, and turbulent mixing. Thermal transmissivity is described in the
Flow and Transport chapter in this User’s Guide.

A client sets a value in units of J K�1 s�1 by default, but it can specify other units, as
described in the Units Recognized appendix. When a client calls the function without
a numeric argument, the function returns the currently set value. Upon creating a link,
the initial thermal transmissivity is guaranteed to be zero-value.

B.2.5 Time marching loop
Member functions “ReportTimeStep()”, “AdvanceTimeStep()”, “AdvanceTransport()”,
“AdvanceHeatTransport()”, and “AdvanceChemical()” work together to make up a time
marching loop. The function “ExtendRun()” can be used to prolong a time marching
loop to a new end time, once the initial loop is complete.

B.2.5.1 ReportTimeStep()
Syntax:

FUNCTION ReportTimeStep(cp, units) RESULT(time_step)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: units
REAL :: time_step

Member function “ReportTimeStep()” returns the largest time step an instance may
take if it is to maintain numerical stability and honor any constraints the client program
may have prescribed. The limiting time step is by default returned in seconds, but the
optional argument allows a client to specify an alternative unit of time.

186



Member Functions

A client program, upon beginning a pass through a time marching loop, will in general
query each ChemPlugin instance the program has spawned. The client program should
then take the least of the values returned and use that value as the length �t of the
current time step.

B.2.5.2 AdvanceTimeStep()
Syntax:

FUNCTION AdvanceTimeStep(cp, time_step, units) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
REAL, INTENT(in),VALUE :: time_step
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: units
INTEGER :: retval

Member function “AdvanceTimeStep()” moves the current time level carried in an
instance forward by the time step specified, adds or removes simple reactants, and
adjusts sliding reactants. By default, the time step is provided in seconds, but the
optional second argument lets a client set an alternative unit of time. A return value of
0 indicates success and non-zero value indicates either an error as occured or client
has reached the final simulation time.

B.2.5.3 AdvanceTransport()
Syntax:

FUNCTION AdvanceTransport(cp) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
INTEGER :: retval

Member function “AdvanceTransport()” triggers the instance to evaluate the effect of
mass transport on the instance’s chemical composition over the course of the current
time step. A non-zero return value indicates failure to perform this step.

B.2.5.4 AdvanceHeatTransport()
Syntax:

FUNCTION AdvanceHeatTransport(cp) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
INTEGER :: retval

Member function “AdvanceHeatTransport()” triggers the instance to evaluate the effect
of heat transport on the instance’s temperature over the course of the current time
step. A non-zero return value indicates failure to perform this step.

187



ChemPlugin User’s Guide

B.2.5.5 AdvanceChemical()
Syntax:

FUNCTION AdvanceChemical(cp) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
INTEGER :: retval

Member function “AdvanceChemical()” causes the instance to evaluate the effect of
kinetic and equilibrium reactions on an instance’s chemical state over the course of
the current time step. A non-zero return value indicates failure to perform this step.

B.2.5.6 SlideFugacity()
Syntax:

FUNCTION SlideFugacity(cp, gas_name, value) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
CHARACTER(LEN=*), INTENT(in) :: gas_name
REAL, INTENT(in) :: value
INTEGER :: retval

Use member function “SlideFugacity()” to adjust the fugacity of a fixed-fugacity gas
within an instance, once the instance has been initialized. The “gas_name” is the name
of the gas in question (e.g., “CO2(g)”) and “value” is the revised fugacity of that gas.

In order to use the “SlideFugacity()” function, the fugacity of the gas in question
must be fixed in the instance configuration. For example:

cp%Config("fix fugacity CO2(g)")

Note the function, despite its name, can be used also to adjust the fixed activity of
an aqueous species, or an activity ratio that has been fixed.

B.2.5.7 SlideTemperature()
Syntax:

FUNCTION SlideTemperature(cp, temp, units) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
REAL, INTENT(in) :: temp
CHARACTER(LEN=*), INTENT(in), OPTIONAL :: units
INTEGER :: retval

Use member function “SlideTemperature()” to adjust an instance’s temperature, once
it has been initializied. The “unit” field is optional and defaults to “C”.

188



Member Functions

Do not use “SlideTemperature()” to set an instance’s initial temperature; instead, call

cp%Config("temperature = 45 C")

to configure the instance at the desired temperature, before initializing it.

B.2.5.8 ExtendRun()
Syntax:

FUNCTION ExtendRun(cp add_time, units) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
REAL, INTENT(in) :: add_time
CHARACTER(LEN=*), INTENT(in), OPTIONAL :: units
INTEGER :: retval

Use member function “ExtendRun()” to extend a reaction simulation, once time marching
is complete. The first argument is the amount of time to be added to the simulation,
in the unit specified as the second argument, or in seconds, by default. The function
returns a zero value upon successful extension of the run.

By extending a simulation’s time range, you extend the range in reaction progress
to be traversed. Tracing a reaction path that spans 10 years, for example, carries the
reaction progress variable � from zero to one. If you were to then add 20 years to the
simulation, � would, over the course of the second round of time marching, increase
from one to three.

B.2.6 Retrieving results
A client program uses the “Report()”, “Report1()”, “Report1i()”, and “Report1c()” member
functions to gather information about the current state of a ChemPlugin instance.

B.2.6.1 Report()
Syntax:

!! To get data which is an array of strings
FUNCTION Report(cp, target, keywords, units) RESULT(retval)

CLASS(ChemPlugin), INTENT(in), TARGET :: cp
CHARACTER(LEN = *), INTENT(out) :: target(:)
CHARACTER(LEN = *), INTENT(in) :: keywords
CHARACTER(LEN=*), INTENT(in), OPTIONAL :: units
INTEGER :: retval

\\ OR

!! To get an array of numeric data
FUNCTION Report(cp, target, keywords, units) RESULT(retval)

CLASS(ChemPlugin), INTENT(in), TARGET :: cp
REAL(8), INTENT(out) :: target(:)
CHARACTER(LEN = *), INTENT(in) :: keywords

189



ChemPlugin User’s Guide

CHARACTER(LEN=*), INTENT(in), OPTIONAL :: units
INTEGER :: retval

\\ OR

!! To get an array of integers
FUNCTION Report(cp, target, keywords, units) RESULT(retval)

CLASS(ChemPlugin), INTENT(in), TARGET :: cp
INTEGER, INTENT(out) :: target(:)
CHARACTER(LEN = *), INTENT(in) :: keywords
CHARACTER(LEN=*), INTENT(in), OPTIONAL :: units
INTEGER :: retval

Use member function “Report()” to retrieve calculation results from a ChemPlugin
instance. Here, “target” is the address in memory to which the results are to be written.
The “keywords” argument identifies the specific result or results to be written, and the
optional “unit” argument sets the unit in which the results are to be cast. The function
returns the number of values copied to “target”.

Whenever the function is unable to fulfill a request, such as when an impossible
unit conversion has been requested, it fills the corresponding location or locations in
“target” with parameter “ANULL”, defined in “ChemPlugin.h”.

The options for specifying “keywords” are listed in the Report Function appendix to
this User’s Guide, and the available units are shown in the Units Recognized appendix.

If a client passes no argument as the “target” argument, i.e using the following
version of “Report”

FUNCTION Report(cp, keywords, units) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
CHARACTER(LEN = *), INTENT(in) :: keywords
CHARACTER(LEN=*), INTENT(in), OPTIONAL :: units
INTEGER :: retval

the function returns the number of values in the data for the specified keywords.
“Report()” is used to retrieve an array of data, such as a vector of the concentrations

of a group of aqueous species. To retrieve a single value of type double, such as the pH
or a species’ concentration, a client may instead call the shorter “Report1()” function.
For a single integer or character string, use “Report1i()” or “Report1c()”, respectively.

Please refer to the Retrieving Results chapter of this User’s Guide for detailed
information about the “Report()” and “Report1()” functions, including several examples
of their use.

190



Member Functions

B.2.6.2 Report1(), Report1i(), and Report1c()
Syntax:

!! To get a single real numeric data value
FUNCTION Report1(cp, value, units) RESULT(data)

CLASS(ChemPlugin), INTENT(in), TARGET :: cp
CHARACTER(LEN = *), INTENT(in) :: keywords
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: units
REAL(8) :: data

!! To get a single integer data value
FUNCTION Report1i(cp, value, units) RESULT(data)

CLASS(ChemPlugin), INTENT(in), TARGET :: cp
CHARACTER(LEN = *), INTENT(in) :: keywords
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: units
INTEGER :: data

!! To get a string value
FUNCTION Report1c(cp, value, units) RESULT(data)

CLASS(ChemPlugin), INTENT(in), TARGET :: cp
CHARACTER(LEN = *), INTENT(in) :: value
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: units
CHARACTER(LEN = 255) :: data

Use member function “Report1()” to retrieve from a ChemPlugin instance a single
value of type real, such as the pH or the concentration of a specific aqueous species.
The “keywords” argument identifies the specific result or results to be written, and the
optional “unit” argument sets the unit in which the results are to be cast. Similarly,
“Report1i()” and “Report1c()” retrieve an integer value and a string, respectively.

The options for specifying “keywords” are listed in the Report Function appendix
to this User’s Guide, and the available units are shown in the Units Recognized
appendix. The function returns the retrieved value.

When “Report1()” fails, it returns a value of “ANULL”, defined in “ChemPlugin.h”;
“Report1i()” returns “ANULL” cast as an integer, and “Report1c()” returns “ANULL” as
a character string.

Please refer to the Retrieving Results chapter of this User’s Guide for detailed
information about the “Report()” and “Report1()” functions, including several examples
of their use.

B.2.7 Output streams
A client program controls the output streams from a ChemPlugin instance with member
functions “Console()”, “PrintOutput()”, “PlotHeader()”, “PlotBlock()”, and “PlotTrailer()”.
The first function is described in the Overview chapter of this User’s Guide, and use
of the latter four functions is explained in detail in the Direct Output chapter. For
FORTRAN syntax of these functions, refer to the next sub-sections.

191



ChemPlugin User’s Guide

It is important to avoid allowing more than one ChemPlugin instance to write into
the same dataset. In such a situation, the output from the instances would appear
intermingled and probably unintelligible.

B.2.7.1 Console()
Syntax:

FUNCTION Console(cp, target) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: plugin
CHARACTER(LEN=*), INTENT(in) :: traget
INTEGER :: retval

Member function “Console()” controls where an instance’s console output is directed.
Console output consists of routine messages an instance produces as it initializes
and undetakes calculations, as well as any warning and error messages that may be
generated. By default, a ChemPlugin instance does not produce console output.

The function’s optional argument “target” is the target for the console stream, which
may be “stdout”, “stderr”, or the name of a dataset. When a client calls the function
without an argument, or an empty string as the argument, output to the console stream
is disabled. A client may enable, disable, or redirect an instance’s console output at
any time.

A client can direct an instance’s console output at declaration:

cp = ChemPlugin("stdout")

Since an instance produces no console output until directed to do so, this is the only
way to capture messages produced when an instance comes into scope and initializes.

B.2.7.2 PrintOutput()
Syntax:

FUNCTION PrintOutput1(cp, basename) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
CHARACTER(LEN=*), INTENT(in), OPTIONAL :: basename
INTEGER :: retval

\\ OR

FUNCTION PrintOutput1(cp, basename, label, rewnd) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: plugin
CHARACTER(LEN=*), INTENT(in) :: basename
CHARACTER(LEN=*), INTENT(in) :: label
LOGICAL, INTENT(in), OPTIONAL :: rewnd
INTEGER :: retval

192



Member Functions

Calling member function “PrintOutput()” triggers a ChemPlugin instance to append a
data block to a print-format dataset.

The optional argument sets the file’s base name. The full file name is the base
name combined with any suffix that may be set. For example, the calls

cp%Config("suffix _1")
cp%PrintOutput("myPrint.txt")

cause a block of output to be written to dataset “myPrint_1.txt”.
When a client calls “PrintOutput()” without basename(“PrintOutput(cp)”), the instance

appends a data block to whatever file is open for print-format output. If none is open,
the instance writes to “ChemPlugin_output.txt”.

The optional “label” argument allows the program to pass an optional character
string to be written into the print dataset, at the head of the data block. For example,

cp%PrintOutput("", "Initial condition")

would write the string “Initial condition” and then a data block to the currently open
dataset.

Passing a true (non-zero) value as the optional argument “rewnd” causes the
instance to rewind the print-format dataset and write a data block at the head of the
file. Use

cp%PrintOutput("", "", true)

to write a data block at the head of the currently open dataset.

B.2.7.3 PlotHeader()
Syntax:

FUNCTION PlotHeader(cp, basename) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
CHARACTER(LEN=*), INTENT(in), OPTIONAL :: basename
INTEGER :: retval

Member function “PlotHeader()” opens and initializes a plot-format dataset by writing
header information to it.

A client may specify the file’s base name as a character string; the full name is the
base name combined with the suffix, if one has been set. If a client calls the function
without an argument, it writes to any file that may be open for plot output. If none is
open, the function opens “ChemPlugin_plot.gtp”, accounting for a suffix, if set. The
“.gtp” extension identifies the file as Gtplot input.

193



ChemPlugin User’s Guide

B.2.7.4 PlotBlock()
Syntax:

FUNCTION PlotBlock(cp) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
INTEGER(C_INT) :: retval

Member function “PlotBlock()” appends to the currently open plot-format dataset a
block of data representing an instance’s current state. The dataset must have been
initialized with a call to “PlotHeader()”.

B.2.7.5 PlotTrailer()
Syntax:

FUNCTION PlotTrailer(cp) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
INTEGER(C_INT) :: retval

Member function “PlotTrailer()” completes the plot-format output dataset by writing the
trailing data structure. A trailer is required by program Gtplot before it can read the
dataset.

When functions “ReportTimeStep()” and “AdvanceTimeStep()” detect time marching
is complete, they automatically write a trailer to any open plot dataset, and close the
dataset. It is not necessary to write a trailer, then, at the end of a time marching loop.

Significantly, a client may continue to append data blocks to a plot dataset, even after
it has used “PlotTrailer()” to write a trailer to it. The additional data blocks overwrite the
trailer data, so the client needs to call “PlotTrailer()” once again to close the dataset.

B.2.8 Convenience
B.2.8.1 Version()
Syntax:

FUNCTION Version(cp)
CLASS(ChemPlugin), INTENT(in), TARGET :: cp
CHARACTER(LEN=255) :: Version

Member function “Version()” returns a pointer to a character string identifying the
version of ChemPlugin in use.

194



Member Functions

B.2.8.2 ConvertUnit()
Syntax:

FUNCTION ConvertUnit1(cp, value, old_unit, new_unit) RESULT(new_value)
CLASS(ChemPlugin), INTENT(in), TARGET :: plugin
REAL, INTENT(in), VALUE :: value
CHARACTER(LEN = *), INTENT(in) :: old_unit, new_unit
REAL(C_DOUBLE) :: new_value

FUNCTION ConvertUnit1(cp, value, old_unit, new_unit, mw, mv, z) RESULT(new_value)
CLASS(ChemPlugin), INTENT(in), TARGET :: plugin
REAL, INTENT(in), VALUE :: value, mw, mv, z
CHARACTER(LEN = *), INTENT(in) :: old_unit, new_unit
REAL(C_DOUBLE) :: new_value

FUNCTION ConvertUnit1(cp, value, old_unit, new_unit, mw, mv, z, &
wmass, smass, density, vbulk) RESULT(new_value)

CLASS(ChemPlugin), INTENT(in), TARGET :: plugin
REAL, INTENT(in), VALUE :: value, mw, mv, z, &

wmass, smass, density, vbulk
CHARACTER(LEN = *), INTENT(in) :: old_unit, new_unit
REAL(C_DOUBLE) :: new_value

Member function “ConvertUnit” converts values from one unit to another. The
Units Recognized appendix to this User’s Guide lists the units available for conversion.

There are three variants to the function. In the simplest variant, a client passes
only the value to be converted, along with the old and new units, and the function
returns the converted value.

Unit conversions involving mass and concentration may require additional
information. To convert concentration from mmol/kg to mg/kg, for example, the
function needs to know molecular weight. For other conversions, the function may
require the molar volume, electrical charge on the species (to convert to and from
meq/kg, for example), the mass of solvent water, the solution mass, the fluid density,
and the bulk volume of the system.

In the second variant of the function call, a client also specifies the mole weight
“mw” in g mol�1, the mole volume “mv” in cm3 mol�1, and the ion charge “z” on the
species in question. The function takes water mass (kg), solution mass (kg), density
(g cm�3), and bulk volume (cm3) from the current state of the ChemPlugin instance.

In the final form, the client specifies the latter four variables, in the units listed. This
variant of the function call can be helpful because it can be used before a client has
calculated the initial system, by calling “Initialize()”.

195



ChemPlugin User’s Guide

B.2.9 Cluster computing
The MPI version of ChemPlugin includes a number of Fortran member functions
specific to cluster computing.

B.2.9.1 MpiAssign()
Syntax:

FUNCTION MpiAssign(plugin, f_dst_mpi_rank) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: plugin
INTEGER, INTENT(in) :: f_dst_mpi_rank
INTEGER(C_INT) :: retval, dst_mpi_rank

Use the “MpiAssign()” member function to associate the stub of a ChemPlugin instance
with a specific client copy. If argument “rank” is the same as the rank of the client
copy calling the function, the stub is expanded within that copy into a full ChemPlugin
instance, and that copy becomes responsible for calculations involving the instance.

For example,

cp%MpiAssign(0)

assigns instance “cp” to the first client copy, which has a rank of zero. Afterward,
“cp” will reference a full ChemPlugin instance on the first client copy, whereas on the
remaining client copies, it will refer to a stub of that instance.

As an alternative to calling MpiAssign(), you can assign rank to a ChemPlugin
object using the ChemPlugin constructor, by setting the rank as the optional third
argument; see the Cluster Computing chapter. Behavior in this case is the same as
if the constructor and “MpiAssign()” had been called serially.

B.2.9.2 MpiOnRank()
Syntax:

FUNCTION MpiOnRank(plugin) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: plugin
INTEGER(C_INT) :: retval

The “MpiOnRank()” member function returns one when called from a client copy of
the same rank as the instance, and zero otherwise.

For example, if instance “cp” is assigned to the first client copy

is_local = cp%MpiOnRank()

the value of INTEGER variable “is_local” on that copy will be one, but zero on the
remaining copies.

196



Member Functions

B.2.9.3 MpiRank()
Syntax:

FUNCTION MpiRank(plugin) RESULT(retval)
CLASS(ChemPlugin), INTENT(in), TARGET :: plugin
INTEGER(C_INT) :: retval

Member function “MpiRank()” returns the rank of the client copy to which an instance
is assigned.

For example, if instance “cp” is assigned to the first client copy, executing the
statement

rank = cp%MpiRank()

will leave INTEGER variable “rank” with a value of zero.

B.2.9.4 MpiReport()
Syntax:

!! To get data which is an array of strings
FUNCTION MpiReport(cp, target, keywords, units, collector) RESULT(retval)

CLASS(ChemPlugin), INTENT(in), TARGET :: cp
CHARACTER(LEN = *), INTENT(out) :: target(:)
CHARACTER(LEN = *), INTENT(in) :: keywords
CHARACTER(LEN=*), INTENT(in), OPTIONAL :: units
INTEGER(C_INT), INTENT(in), OPTIONAL :: collector
INTEGER :: retval

\\ OR

!! To get an array of numeric data
FUNCTION MpiReport(cp, target, keywords, units, collector) RESULT(retval)

CLASS(ChemPlugin), INTENT(in), TARGET :: cp
REAL(8), INTENT(out) :: target(:)
CHARACTER(LEN = *), INTENT(in) :: keywords
CHARACTER(LEN=*), INTENT(in), OPTIONAL :: units
INTEGER(C_INT), INTENT(in), OPTIONAL :: collector
INTEGER :: retval

\\ OR

!! to get an array of integers
FUNCTION MpiReport(cp, target, keywords, units, collector) RESULT(retval)

CLASS(ChemPlugin), INTENT(in), TARGET :: cp
INTEGER, INTENT(out) :: target(:)
CHARACTER(LEN = *), INTENT(in) :: keywords
CHARACTER(LEN=*), INTENT(in), OPTIONAL :: units

197



ChemPlugin User’s Guide

INTEGER(C_INT), INTENT(in), OPTIONAL :: collector
INTEGER :: retval

A call to “MpiReport()” with two or three parameters behaves identically to calling
“Report()”, except that it can retrieve information from any ChemPlugin instance,
rather than only those local to the client copy making the call. You use this form of
the function call when every client copy needs to retrieve information about all of the
ChemPlugin instances considered by the communication group.

When you call “MpiReport()” for an instance “cp”, the client copy responsible for
“cp” broadcasts information to the other client copies, which wait to receive the data.
As such, the client copies need to call the function synchronously, i.e., in the same
sequence. The function may not be called within a multithreaded loop.

The optional fourth parameter is used to specify the rank of a client copy that will
collect the result. You use this form of the function call when you would like a single
client copy to assemble information from all of the ChemPlugin instances considered
by the communication group.

The function when used in this way does work on only the collector copy and
the client copy responsible for “cp”. Called from those copies, the function writes
the requested information to the target and returns the number of values written. Of
course, the responsible copy may be the same as the collector copy. For the remaining
client copies, the function writes no data and returns a value of zero; since nothing is
written, no memory need be allocated for “target”.

Setting the collector to “GLOBAL” is equivalent to omitting the fourth argument.

B.2.9.5 MpiReport1(), MpiReport1i(), MpiReport1c()
Syntax:

!! To get a single real numeric data value
FUNCTION MpiReport1(cp, value, units, collector) RESULT(data)

CLASS(ChemPlugin), INTENT(in), TARGET :: cp
CHARACTER(LEN = *), INTENT(in) :: keywords
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: units
INTEGER(C_INT), INTENT(in), OPTIONAL :: collector
REAL(8) :: data

!! To get a single integer data value
FUNCTION MpiReport1i(cp, value, units, collector) RESULT(data)

CLASS(ChemPlugin), INTENT(in), TARGET :: cp
CHARACTER(LEN = *), INTENT(in) :: keywords
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: units
INTEGER(C_INT), INTENT(in), OPTIONAL :: collector
INTEGER :: data

!! To get a string value
FUNCTION MpiReport1c(cp, value, units, collector) RESULT(data)

CLASS(ChemPlugin), INTENT(in), TARGET :: cp

198



Member Functions

CHARACTER(LEN = *), INTENT(in) :: value
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: units
INTEGER(C_INT), INTENT(in), OPTIONAL :: collector
CHARACTER(LEN = 255) :: data

Functions “MpiReport1()”, “MpiReport1i()”, and “MpiReport1c()” are the counterparts
to “MpiReport()” for returning, respectively, a single floating point or integer value, or
a character string.

Called with one or two arguments, the functions behave identically to “Report1()”,
“Report1i()”, and “Report1c()”,except theycanretrieve information fromanyChemPlugin
instance, rather than only those local to the client copy making the call. When you
set a collector copy, the functions let you assemble information from any ChemPlugin
instance within a single client copy, just as “MpiReport()” does. Setting the collector
to “GLOBAL” is equivalent to omitting the third argument.

The “MpiReport()” family functions are synchronous and hence need to be called by
each client copy in the same sequence; they may not be called within a multithreaded
loop.

B.2.9.6 MpiUpdateLink()
Syntax:

FUNCTION MpiUpdateLink(link, f_update_values) RESULT(retval)
CLASS(CpiLink), INTENT(in), TARGET :: link
INTEGER, INTENT(in), OPTIONAL :: f_update_values

In a cluster computing application, a local ChemPlugin instance may be linked to an
instance assigned to a different client copy. In this case, the corresponding CpiLink
object caches information about the foreign instance, making it available to the local
copy.

Whenever the state of the foreign instance has changed in an MPI application,
its cached information needs to be updated before you call AdvanceTransport() or
AdvanceHeatTransport(). The “MpiUpdateLink()” member function of the CpiLink object
serves to update the cache.

“MpiUpdateLink()” needs to be called by every client copy in the communication
group, and in the same sequence by each copy. The function may not be called from
within a multithreaded loop.

A zero-value return from the function indicates success. Note that all client copies
need to call this function in the same sequence, to avoid the possibility of entering a
gridlocked state.

In specialized circumstances you may wish use the “task” argument to control which
parts of the cache are updated. The argument may be

“-1” updates all of the below, the default

“1” updates temperature and thermal properties

199



ChemPlugin User’s Guide

“2” updates fluid density and viscosity

“4” updates chemical and isotopic composition

“8” updates the position and extent of a linked instance

Options can be combined by integer addition, e.g., “1 + 2”.
An example:

TYPE(ChemPlugin) :: cp1, cp2
TYPE(CpiLink) :: link0
INTEGER :: l, error

cp1 = ChemPlugin("", "", 0)
cp2 = ChemPlugin("", "", 1)
link0 = cp1%Link(cp2)

... some code ...

DO l = 0, cp1%nLinks() - 1
MpiUpdateLink( cp1%Link(l) )

END IF

200



Member Functions

B.3 Python
Create an instance called “cp” of Chemplugin using the object’s constructor

cp = ChemPlugin()

The constructor can accept two arguments, as described in the Overview chapter.
The first argument defines the console output stream, whereas the second is used to
set option flags. For example, the statement

cp = ChemPlugin("stdout", "-d mythermo.tdat -s mysurface.sdat")

creates an instance that sends its console output to the standard output,
takes thermodynamic data from “mythermo.tdat”, and reads surface data from
“mysurface.sdat”.

B.3.1 Configuring and initializing instances
Member functions “Config()” and “Initialize()” let a client configure a ChemPlugin
instance and prepare it for the start of a reaction simulation.

B.3.1.1 Config()
Syntax:

def Config(self, command):

Use member function “Config()” to pass configuration commands to a
ChemPlugin instance. The configuration commands and their syntax are listed
in the Configuration Commands chapter of this guide. Examples:

cp.Config("pH=5")
cp.Config("Na+ = 1 mmol/kg")

A client can pass multiple commands with a single function call, or continue a
command onto another call

cp.Config("Na+ = 1 mmol/kg; Cl- = 1 mmol/kg")

cp.Config("kinetic Quartz \")
cp.Config("rate_con = 2e-12, surface = 1000")

if it separates commands with semicolons, and marks incomplete commands with a
trailing backslash.

A zero-value return indicates the command processed successfully.

201



ChemPlugin User’s Guide

B.3.1.2 Initialize()
Syntax:

def Initialize(self, time_end=0.0, unit=None):

The “Initialize()” member function triggers an instance to calculate its initial condition,
including the distribution of mass across the various chemical species, and to prepare
the instance to begin time marching.

The member function is commonly called without arguments, but the client can use
the call to specify the end time of the simulation. For example, the statement

cp.Initialize(10.0, "years")

has the same effect as

cp.Config("time end = 10 years")
cp.Initialize()

An end time of zero is ignored, and the default unit for time is seconds. A non-zero
return indicates the instance was unable to initialize. In this case, diagnostic messages
are written to the instance’s console output.

B.3.2 Linking instances
Member function “Link()” creates a link connecting two ChemPlugin instances, functions
“Unlink()” and “ClearLinks()” remove links that have been created, and the function
“nLinks()” reports the number of existing links. Similarly, function “Outlet()” creates
an open-ended link from a ChemPlugin instance, and “nOutlets()” reports how many
such links exist.

A client can create any number of links between two instances. For example, you
might wish to create a link carrying fluid from an instance “cp1” to another, “cp2”. The
client could then create a second link to account for the possibility of back-flow.

Each of the functions in this section are reciprocal in operation. In other words,
if a client links “cp2” to “cp1”, both instances know about the link. You should then
link “cp1” to “cp2” only if you wish to spawn a second link between the instances.
Similarly, when the client unlinks “cp2” from “cp1”, both instances are aware the link
has been removed.

B.3.2.1 Link()
Syntax:

// arg can be either another plugin or an index.
def Link(self, arg=None)

The “Link()” member function connects two ChemPlugin instances. For example, the
statements

202



Member Functions

cp1 = ChemPlugin()
cp2 = ChemPlugin()
cp1.Link(cp2)

link two ChemPlugin instances, “cp1” and “cp2”. Once this statement is executed,
there is no need to execute the reciprocal operation

cp2.Link(cp1)

Doing so, in fact, would create an additional link.
The member function returns a reference to the link, which a client can store for

later operations. For example, the statements

link1 = cp1.Link(cp2)
link1.FlowRate(0.2, "m3/s")

set a flow rate of 0.2 m3 s�1 from “cp2” to “cp1”.
When a client calls “Link()” without an argument, the function creates an open link

that functions as a free outlet. Water can flow outward along the link, away from “cp”,
but not inward toward the instance; no first-order transport, such as diffusion or heat
conduction, is possible across an open link.

When a client passes “Link()” an index, rather than a reference to a ChemPlugin
instance, the member function returns a reference to the link in question. If, for example,
we create two links

cp1.Link(cp2)
cp1.Link(cp3)

the links will have indices 0 and 1, respectively, assuming no earlier links exist. Then,
the statement

link1 = cp1.Link(1)

returns a reference to the second link, to be stored in “link1”.

B.3.2.2 Outlet()
Syntax:

def Outlet(self)

The “Outlet()” member function creates an open link that functions as a free outlet. A
call to “Outlet()” is the same as calling “Link()” without an argument.

203



ChemPlugin User’s Guide

For example, the statement

link1 = cp.Outlet();

creates an open link to which “link1” refers.
Note: Water can flow outward along the link, away from “cp”, but not inward toward

the instance; no first-order transport, such as diffusion or heat conduction, is possible
across an open link.

B.3.2.3 Unlink()
Syntax:

// member of CpiLink class
def Unlink(self):

// member of ChemPlugin class
// arg can be either a plugin or an index,
// arg=None is for deleting free outlet links
def cp.Unlink(self, arg=None):

A client can remove a link between two nodes using the “Unlink()” member function
of either the CpiLink or ChemPlugin class. In the latter case, it can refer to the link
either by index or reference to the linked instance.

Some examples:

cp1 = ChemPlugin()
cp2 = ChemPlugin()
link1 = cp1.Link(cp2)
... some code ...
link1.Unlink()

or
cp1.Unlink(cp2)

or
cp1.Unlink(0)

Each of the three examples serves the same purpose. A zero-value return indicates
success.

B.3.2.4 ClearLinks()
Syntax:

def ClearLinks(self)

The “ClearLinks()” member function removes all links to a ChemPlugin instance.
Example:

204



Member Functions

cp.ClearLinks()

A zero-value return indicates success.

B.3.2.5 nLinks()
Syntax:

def nLinks(self, another_cp=None):

Member function “nLinks()” returns the number of links that have been made to a
ChemPlugin instance.

When a client calls the function without an argument, it reports the total number of
links to the instance, including open links. For example, the statements

cp1.Link(cp2)
cp1.Link(cp3)
m = cp1.nLinks()

result in a value of 2 being stored in variable “m”.
Calling the function with a second ChemPlugin instance as an argument yields

the number of links to the second instance. Continuing the previous example, the
statement

... cont’d ...
n = cp1.nLinks(cp3)

returns to “n” a value of one.

B.3.2.6 nOutlets()
Syntax:

def nOutlets(self):

Member function “nOutlets()” returns the number of open links connected to a
ChemPlugin instance.

B.3.3 Transport across links
Member functions “FlowRate()”, “Transmissivity()”, and “HeatTrans()” control how
chemical mass and heat energy are transported across links. In each case, calling
the member function with a numerical value and optionally specifying units sets the
quantity in question. Calling the function without a numerical value, in contrast, returns
the current setting in the units specified, or in the default units.

205



ChemPlugin User’s Guide

B.3.3.1 FlowRate()
Syntax:

// argv is an array. It can be either argv=[flow] or
// argv=[flow, unit]
def FlowRate(self, *argv):

Use member function “FlowRate()” to set the rate at which water flows across a link.
The default unit for flow rate is m3 s�1, but a client can specify any other unit of
volume flow, as listed in the Units Recognized appendix.

Calling “FlowRate()” without a numeric argument returns the current value for flow
rate, as set by the most recent call to the function. When a link is created, the flow
rate is guaranteed to be zero-value initially.

By ChemPlugin convention, flow into an instance is positive, and outward flow is
negative in sign. Hence, the statements

link1 = cp1.Link(cp2)
link1.FlowRate(2.0e6, "cm3/s")
flow = link1.FlowRate()

result in a value of 2.0 being stored in variable “flow”, since this quantity is 2�106

cm3 s�1, expressed in m3 s�1. In this case, flow is positive, so water flows from “cp2”
to “cp1”.

B.3.3.2 Transmissivity()
Syntax:

// argv is an array. It can be either argv=[trans] or
// argv=[trans, unit]
def Transmissivity(self, *argv):

The“Transmissivity()”member functionsets the transmissivitydescribingmass transport
across a link by first-order processes, such as diffusion, dispersion, and turbulent
mixing. The definition of the mass transmissivity is described in this User’s Guide, in
the Flow and Transport chapter.

A client sets a value in units of m3 s�1 by default, but it can specify other units, as
described in the Units Recognized appendix. When a client calls the function without
a numeric argument, the function returns the currently set value. Upon creating a link,
the initial transmissivity is guaranteed to be zero-value.

206



Member Functions

B.3.3.3 HeatTrans()
Syntax:

// argv is an array. It can be either argv=[trans] or
// argv=[trans, unit]
def HeatTrans(self, *argv):

The “HeatTrans()” member function sets the thermal transmissivity describing the
transport of heat energy across a link by first-order processes, such as conduction,
thermal dispersion, and turbulent mixing. Thermal transmissivity is described in the
Flow and Transport chapter in this User’s Guide.

A client sets a value in units of J K�1 s�1 by default, but it can specify other units, as
described in the Units Recognized appendix. When a client calls the function without
a numeric argument, the function returns the currently set value. Upon creating a link,
the initial thermal transmissivity is guaranteed to be zero-value.

B.3.4 Time marching loop
Member functions “ReportTimeStep()”, “AdvanceTimeStep()”, “AdvanceTransport()”,
“AdvanceHeatTransport()”, and “AdvanceChemical()” work together to make up a time
marching loop. The function “ExtendRun()” can be used to prolong a time marching
loop to a new end time, once the initial loop is complete.

B.3.4.1 ReportTimeStep()
Syntax:

def ReportTimeStep(self, unit = None):

Member function “ReportTimeStep()” returns the largest time step an instance may
take if it is to maintain numerical stability and honor any constraints the client program
may have prescribed. The limiting time step is by default returned in seconds, but the
optional argument allows a client to specify an alternative unit of time.

A client program, upon beginning a pass through a time marching loop, will in general
query each ChemPlugin instance the program has spawned. The client program should
then take the least of the values returned and use that value as the length �t of the
current time step.

B.3.4.2 AdvanceTimeStep()
Syntax:

def AdvanceTimeStep(self, deltat, unit=None):

Member function “AdvanceTimeStep()” moves the current time level carried in an
instance forward by the time step specified, adds or removes simple reactants, and
adjusts sliding reactants. By default, the time step is provided in seconds, but the
optional second argument lets a client set an alternative unit of time. A zero-return

207



ChemPlugin User’s Guide

value indicates the process was successful. A non-zero value indicates the time
marching has either completed or failed.

B.3.4.3 AdvanceTransport()
Syntax:

def AdvanceTransport(self):

Member function “AdvanceTransport()” triggers the instance to evaluate the effect of
mass transport on the instance’s chemical composition over the course of the current
time step.

B.3.4.4 AdvanceHeatTransport()
Syntax:

def AdvanceHeatTransport(self):

Member function “AdvanceHeatTransport()” triggers the instance to evaluate the effect
of heat transport on the instance’s temperature over the course of the current time
step.

B.3.4.5 AdvanceChemical()
Syntax:

def AdvanceChemical(self):

Member function “AdvanceChemical()” causes the instance to evaluate the effect of
kinetic and equilibrium reactions on an instance’s chemical state over the course of
the current time step.

B.3.4.6 SlideFugacity()
Syntax:

def SlideFugacity(self, gas_name, value):

Use member function “SlideFugacity()” to adjust the fugacity of a fixed-fugacity gas
within an instance, once the instance has been initialized. The “gas_name” is the name
of the gas in question (e.g., “CO2(g)”) and “value” is the revised fugacity of that gas.

In order to use the “SlideFugacity()” function, the fugacity of the gas in question
must be fixed in the instance configuration. For example:

cpi.Config("fix fugacity CO2(g)")

Note the function, despite its name, can be used also to adjust the fixed activity of
an aqueous species, or an activity ratio that has been fixed.

208



Member Functions

B.3.4.7 SlideTemperature()
Syntax:

def SlideTemperature(self, temp, unit=None):

Use member function “SlideTemperature()” to adjust an instance’s temperature, once
it has been initializied. The “unit” field is optional and defaults to “C”.

Do not use “SlideTemperature()” to set an instance’s initial temperature; instead, call

cp.Config("temperature = 45 C")

to configure the instance at the desired temperature, before initializing it.

B.3.4.8 ExtendRun()
Syntax:

def ExtendRun(self, add_time, unit=None):

Use member function “ExtendRun()” to extend a reaction simulation, once time marching
is complete. The first argument is the amount of time to be added to the simulation,
in the unit specified as the second argument, or in seconds, by default. The function
returns a zero value upon successful extension of the run.

By extending a simulation’s time range, you extend the range in reaction progress
to be traversed. Tracing a reaction path that spans 10 years, for example, carries the
reaction progress variable � from zero to one. If you were to then add 20 years to the
simulation, � would, over the course of the second round of time marching, increase
from one to three.

B.3.5 Retrieving results
A client program uses the “Report()” and “Report1()” member functions to gather
information about the current state of a ChemPlugin instance.

B.3.5.1 Report()
Syntax:

def Report(self, keywords, units=None):

Use member function “Report()” to retrieve calculation results from a ChemPlugin
instance. The “keywords” argument identifies the specific result or results to be written,
and the optional “unit” argument sets the unit in which the results are to be cast. The
function returns a list of the requested data. If the requested keyword evaluates to
single value, the data is returned as a single-entry list.

Whenever the function is unable to fulfill a request, such as when an impossible
unit conversion has been requested, it fills the corresponding location or locations in
“target” with parameter “ANULL”, defined in “ChemPlugin.py”.

209



ChemPlugin User’s Guide

The options for specifying “keywords” are listed in the Report Function appendix to
this User’s Guide, and the available units are shown in the Units Recognized appendix.

“Report()” is used to retrieve a list of data, such as a vector of the concentrations of
a group of aqueous species. To retrieve a single value, such as the pH or a species’
concentration, a client may instead call the shorter “Report1()” function. “Report1()”
can return a floating point or integer value, or a character string; use of the “Report1i()”
and “Report1c()” functions in Python is deprecated.

Please refer to the Retrieving Results chapter of this User’s Guide for detailed
information about the “Report()” and “Report1()” functions, including several examples
of their use.

B.3.5.2 Report1()
Syntax:

def Report1(self, value, unit=None):

Use member function “Report1()” to retrieve from a ChemPlugin instance a single value,
such as the pH or the concentration of a specific aqueous species. The value returned
can be a floating point number, an integer, or a character string. The “keywords”
argument identifies the specific result or results to be written, and the optional “unit”
argument sets the unit in which the results are to be cast.

The options for specifying “keywords” are listed in the Report Function appendix
to this User’s Guide, and the available units are shown in the Units Recognized
appendix. The function returns the retrieved value.

If “Report1()” fails when queried for a floating point value, it returns a value of
“ANULL”, defined in “ChemPlugin.py”; the function returns “ANULL” cast as an integer
if it fails when queried for an integer value, and a NULL pointer in lieu of an unavailable
character string.

Use of the “Report1i()” and “Report1c()” functions in Python is deprecated, in favor
of the “Report1()” member function.

Please refer to the Retrieving Results chapter of this User’s Guide for detailed
information about the “Report()” and “Report1()” functions, including several examples
of their use.

B.3.6 Output streams
A client program controls the output streams from a ChemPlugin instance with member
functions “Console()”, “PrintOutput()”, “PlotHeader()”, “PlotBlock()”, and “PlotTrailer()”.
The first function is described in the Overview chapter of this User’s Guide, and use
of the latter four functions is explained in detail in the Direct Output chapter. For
Python syntax of these functions, refer to following subsections.

It is important to avoid allowing more than one ChemPlugin instance to write into
the same dataset. In such a situation, the output from the instances would appear
intermingled and probably unintelligible.

210



Member Functions

B.3.6.1 Console()
Syntax:

public int cp.Console()
def cp.Console(self, stream=null)

Member function “Console()” controls where an instance’s console output is directed.
Console output consists of routine messages an instance produces as it initializes
and undertakes calculations, as well as any warning and error messages that may
be generated. By default, a ChemPlugin instance does not produce console output.

The function’s optional argument is the target for the console stream, which may be
“stdout”, “stderr”, or the name of a dataset. When a client calls the function without
an argument, or with null or an empty string as the argument, output to the console
stream is disabled. A client may enable, disable, or redirect an instance’s console
output at any time.

A client can direct an instance’s console output at declaration:

cp = ChemPlugin("stdout")

Since an instance produces no console output until directed to do so, this is the only
way to capture messages produced when an instance comes into scope and initializes.

B.3.6.2 PrintOutput()
Syntax:

def PrintOutput(self, basename=None, label=None, rewnd=False)

Calling member function “PrintOutput()” triggers a ChemPlugin instance to append a
data block to a print-format dataset.

The optional argument sets the file’s base name. The full file name is the base
name combined with any suffix that may be set. For example, the calls

cp.Config("suffix _1")
cp.PrintOutput("myPrint.txt")

cause a block of output to be written to dataset “myPrint_1.txt”.
When a client calls “PrintOutput()” without an argument, the instance appends a

data block to whatever file is open for print-format output. If none is open, the instance
writes to “ChemPlugin_output.txt”.

The optional “label” argument allows the program to pass an optional character
string to be written into the print dataset, at the head of the data block. For example,

cp.PrintOutput(None, "Initial condition")

211



ChemPlugin User’s Guide

would write the string “Initial condition” and then a data block to the currently open
dataset.

Passing a true value as the optional third argument causes the instance to rewind
the print-format dataset and write a data block at the head of the file. Use

cp.PrintOutput(None, None, true)

to write a data block at the head of the currently open dataset.

B.3.6.3 PlotHeader()
Syntax:

def PlotHeader(self, basename=None):

Member function “PlotHeader()” opens and initializes a plot-format dataset by writing
header information to it.

A client may specify the file’s base name as a string; the full name is the base name
combined with the suffix, if one has been set. If a client calls the function without
an argument, it writes to any file that may be open for plot output. If none is open,
the function opens “ChemPlugin_plot.gtp”, accounting for a suffix, if set. The “.gtp”
extension identifies the file as Gtplot input.

B.3.6.4 PlotBlock()
Syntax:

def PlotHeader(self, basename=None):

Member function “PlotBlock()” appends to the currently open plot-format dataset a
block of data representing an instance’s current state. The dataset must have been
initialized with a call to “PlotHeader()”.

B.3.6.5 PlotTrailer()
Syntax:

def PlotTrailer(self):

Member function “PlotTrailer()” completes the plot-format output dataset by writing the
trailing data structure. A trailer is required by program Gtplot before it can read the
dataset.

When functions “ReportTimeStep()” and “AdvanceTimeStep()” detect time marching
is complete, they automatically write a trailer to any open plot dataset, and close the
dataset. It is not necessary to write a trailer, then, at the end of a time marching loop.

Significantly, a client may continue to append data blocks to a plot dataset, even after
it has used “PlotTrailer()” to write a trailer to it. The additional data blocks overwrite the
trailer data, so the client needs to call “PlotTrailer()” once again to close the dataset.

212



Member Functions

B.3.7 Convenience
B.3.7.1 Version()
Syntax:

def Version(self):

Member function “Version()” returns a pointer to a character string identifying the
version of ChemPlugin in use.

B.3.7.2 ConvertUnit()
Syntax:

def ConvertUnit(self, value, old_unit, new_unit, mw=0.0, \
mv=0.0, z=0.0, wmass=ANULL, smass=ANULL,\

density=ANULL, vbulk=ANULL):

Member function “ConvertUnit” converts values from one unit to another. The
Units Recognized appendix to this User’s Guide lists the units available for conversion.

There are three variants to the function. In the simplest variant, a client passes
only the value to be converted, along with the old and new units, and the function
returns the converted value.

Unit conversions involving mass and concentration may require additional
information. To convert concentration from mmol/kg to mg/kg, for example, the
function needs to know molecular weight. For other conversions, the function may
require the molar volume, electrical charge on the species (to convert to and from
meq/kg, for example), the mass of solvent water, the solution mass, the fluid density,
and the bulk volume of the system.

In the second variant of the function call, a client also specifies the mole weight
“mw” in g mol�1, the mole volume “mv” in cm3 mol�1, and the ion charge “z” on the
species in question. The function takes water mass (kg), solution mass (kg), density
(g cm�3), and bulk volume (cm3) from the current state of the ChemPlugin instance.

In the final form, the client specifies the latter four variables, in the units listed. This
variant of the function call can be helpful because it can be used before a client has
calculated the initial system, by calling “Initialize()”.

213



214



Appendix: Configuration Commands

This chapter serves as a reference to the commands used to configure a ChemPlugin
instance, and their syntax. You pass commands to a ChemPlugin instance with the
"Config" member function. To pass the command “pH = 6” to an instance pointed to
by “cp”, for example, you could include the statement

cp.Config("pH = 6");

in a client program written in C or C++.

C.1 Comparison to React
The commands for configuring ChemPlugin are maintained to closely mirror the
commands used by the React application in The Geochemist’s Workbench software
package. The ChemPlugin commands, nonetheless, differ in certain aspects from
those for React, and the differences are described in this section.

C.1.1 Default values
The default values for two variables differ between ChemPlugin and React. Variable
“delxi” defaults to 1.0 in ChemPlugin, but 0.01 in React. In the absence of other
constraints on the reaction step, then, ChemPlugin would take a single step to complete
a reaction path, whereas React would take 100.

The default for variable “step_increase” in ChemPlugin is 2.0, rather than the value
of 1.5 that React carries as the default. A ChemPlugin instance, therefore, might
increase the step size by default somewhat more quickly than the React application.

To set a ChemPlugin instance to use React’s defaults for the two variables, you
would issue a call

cp.Config("delxi = .01; step_increase = 1.5");

from a C or C++ client program.
In addition, ChemPlugin is set by default to not produce print-format and plot

datasets, whereas React writes these files by default. To set React’s default behavior
in ChemPlugin, call

215



ChemPlugin User’s Guide

cp.Config("print = on; plot = on");

from the client program.
A ChemPlugin instance does not know at initialization time whether or not it is

embarking on a polythermal simulation, since it may later be linked directly or indirectly
to instances of differing temperature. To set up a simulation known to be isothermal,
the client should issue

cp.Config("temperature = isothermal");

In this case, when the ChemPlugin instance assigns log Ks to reactions, it will behave
as React does. Specifically, to assign a log K at one of the thermo dataset’s primary
temperatures, it will use the corresponding value directly, rather than fit log K to a
polynomial versus temperature.

Finally, ChemPlugin by default writes no acknowledgment to the console upon
completing a reaction step, but React writes a banner showing the step number, the
point in reaction progress attained, and the number of iterations required to complete
the step. The call

cp.Config("pluses = banner");

sets a ChemPlugin instance to behave in this sense like React.

C.1.2 Omitted commands
React maintains a user interface, whereas the client program serves as the interface
for a ChemPlugin application. As such, the following commands are available in React,
but not ChemPlugin: “clear”, “clipboard”, “go”, “grep”, “gtplot”, “help”, “polymorphs”,
“quit”, “resume”, “system”, and “usgovt”.

As well, React’s “audit” command is not available in ChemPlugin, since only the
client program can audit mass balance globally.

C.1.3 Additional commands
ChemPlugin recognizes two commands, “Courant” and “Xstable”, that are used to
control time stepping, in light of the stability criteria for mass and heat transport. React
does not consider transport and hence the commands are not needed.

ChemPlugin recognizes a command “pressure” that lets the client program control
the density of the fluid, and hence its compression. ChemPlugin also recognizes
commands “adjust_mass”, “adjust_rate”, and “resize”, which are not available in React.

216



Configuration Commands

C.2 Command reference
The syntax of each command available to configure a ChemPlugin instance is shown
below.

C.2.1 <unit>
<value> <free> <unit> <as element symbol> <basis entry>

To constrain the initial system, enter a command containing only the above entries.
Entries may appear in any order. The qualifier “free” specifies that the constraint
applies to the free rather than to the bulk basis entry. ChemPlugin recognizes the
following units for constraining the initial system:

By mass or volume:
mol mmol umol nmol
kg g mg ug ng
eq meq ueq neq
cm3 m3 km3 l

By concentration:
mol/kg mmol/kg umol/kg nmol/kg
molal mmolal umolal nmolal
mol/l mmol/l umol/l nmol/l
g/kg mg/kg ug/kg ng/kg
wt% "wt fraction"
g/l mg/l ug/l ng/l
eq/kg meq/kg ueq/kg neq/kg
eq/l meq/l ueq/l neq/l

By carbonate alkalinity (applied to bicarbonate component):
eq_acid meq_acid ueq_acid neq_acid
eq_acid/kg meq_acid/kg ueq_acid/kg neq_acid/kg
eq_acid/l meq_acid/l ueq_acid/l neq_acid/l
g/kg_as_CaCO3 mg/kg_as_CaCO3 ug/kg_as_CaCO3 ng/kg_as_CaCO3
wt%_as_CaCO3
g/l_as_CaCO3 mg/l_as_CaCO3 ug/l_as_CaCO3 ng/l_as_CaCO3
mol/kg_as_Ca... mmol/kg_as_Ca... umol/kg_as_Ca... nmol/kg_as_CaCO3
mol/l_as_CaCO3 mmol/l_as_CaCO3 umol/l_as_CaCO3 nmol/l_as_CaCO3

Per volume of the system:
mol/cm3 mmol/cm3 umol/cm3 nmol/cm3
kg/cm3 g/cm3 mg/cm3 ug/cm3
ng/cm3
mol/m3 mmol/m3 umol/m3 nmol/m3
kg/m3 g/m3 mg/m3 ug/m3
ng/m3
volume% "vol. fract."

By activity:

217



ChemPlugin User’s Guide

activity fugacity ratio
pH V pe

By partial pressure:
Pa MPa atm bar
psi

Activity and fugacity may be abbreviated to “a” or “f”. Keyword “total” reverses a setting
of “free”.

Use the “as” keyword to constrain mass in terms of elemental equivalents. For
example, the command

CH3COO- = 10 umol/kg as C

specifies 5 umol/kg of acetate ion, since each acetate contains two carbons, whereas

20 mg/kg SO4-- as S

would specify 59.9 mg/kg of sulfate, since the ion’s mole weight is about 3 times that
of sulfur itself.

Examples:

55 mg/kg HCO3-
Na+ = 1 molal
1 ug/kg U++++
100 free cm3 Dolomite
pH = 8
Eh = .550 V
log f O2(g) = -60
HCO3- = 30 mg/kg as C

You may in a similar fashion constrain the concentration of a kinetic aqueous or
surface complex. For example, the commands

kinetic AlF++
AlF++ = 1 umol/kg

set the concentration of the kinetic complex AlFCC to 1 �mol kg�1.

C.2.2 <isotope>

<isotope | symbol> <fluid | reactant | segregated mineral> = <value>

Use the name of any isotope system loaded in the isotope dataset (also, the isotope’s
symbol) to set the isotopic composition of the initial fluid, reactant species (aqueous
species, minerals, end members, gases, or oxides) or segregated minerals. The

218



Configuration Commands

composition may be set on any scale (e.g., SMOW, PDB, ...), but you must be consistent
throughout the calculation.

For example, if the 17O isotope system has been added to the isotope dataset, you
could enter:

oxygen-17 fluid = -10, Quartz = +15
or

17-O fluid = -10, Quartz = +15

Note that you use the name of the corresponding mineral to set the isotopic composition
of an end member.

The commands

oxygen-17 remove
oxygen-17 off

clear all settings for 17O isotopes from the calculation.

C.2.3 activity

activity <species> = <value>

Use the “activity” command (abbrev.: “a”) to constrain the activity of an aqueous
species in the initial system. Examples:

activity Na+ = 0.3
log a H+ = -5

See also the “pH”, “Eh”, “pe”, “ratio”, “fugacity”, “fix”, and “slide” commands.

C.2.4 add
add <basis species>

Use the “add” command to include a basis species in the calculation. Example:

add HCO3-

See also the “swap”, “activity”, “fugacity”, “pH”, “pe”, and “Eh” commands.

C.2.5 adjust_mass

adjust_mass <mineral> <mass_increment> <unit> <as <element symbol>>

In ChemPlugin, use the “adjust_mass” command to add mass to (or remove mass
from) a kinetically reacting mineral “on the fly”, i.e., during the course of a simulation.
Arguments to the command are the kinetic mineral in question, the increment (positive)

219



ChemPlugin User’s Guide

or decrement (negative) to the reactant’s mass, and the unit in which the mass change
is provided. The unit may be any recognized by the “kinetic” (or “react”) command.

Consider a client program that within a ChemPlugin instance “cpi” sets “K-feldspar”
to react according to a kinetic rate law. You might embed within the client’s time
marching loop the member function call:

cpi.Config("adjust_mass K-feldspar 2 cm3");

The statement causes the instance to add 2 cm3 to the current value for K-feldspar
mass; if there are currently 10 cm3 of the mineral in the reacting system, calling the
member function in this way increases mass to 12 cm3.

C.2.6 adjust_rate

adjust_rate <species | mineral | gas> <new_rate> <unit> <as <element symbol>>

ChemPlugin’s “adjust_rate” command changes the rate at which a simple reactant is
being added to the system “on the fly”, i.e., during the course of a simulation. Arguments
to the command are the simple reactant in question, the new rate of addition, and
the unit in which the new rate is provided. The unit may be any recognized by the
“react” command.

For example, consider a client program that adds “NaOH” as a simple reactant to
ChemPlugin instance “cpi”. You might embed within the client’s time marching loop
the statement:

cpi.Config("adjust_rate NaOH 50 mg/s");

The statement causes the instance to begin adding NaOH at a rate of 50 mg s�1.

C.2.7 alkalinity

alkalinity = <value> <unit>

Use the “alkalinity” command to constrain the total concentration of HCO�3 to reflect
the solution’s carbonate alkalinity. You can specify one of the units listed in the
Units Recognized appendix; “mg/kg_as_CaCO3” is the default. To use this option,
the solution pH must be set explicitly.

220



Configuration Commands

C.2.8 alter
alter <species | mineral | gas> <log K s>
alter <species | mineral | gas> <poly coefs> TminK = <value> TmaxK = <value>
alter <surface species> <poly coefs> TminK = <value> TmaxK = <value>
alter <surface species> logK = <value> dlogK/dT = <value>
alter <exchange species> beta = <value>
alter <sorbed species> Kd = <value>
alter <sorbed species> Kf = <value> nf = <value>
alter <solid solution> <type> <discrete | continuous> \

<from <value> to <value> step <value>> <<variable> = <value>>

Use the “alter” command to change the temperature expansion for a species’, mineral’s,
or gas’ log K, to adjust the stability of a surface species, or to change the properties
of a solid solution.

Temperature expansions for logKs are given in the thermo dataset either as T -tables,
or by up to six coefficients of a polynomial. When the current thermo dataset uses
T -tables, you list replacement values at each of the principal temperatures specified
in the dataset, most commonly 0°C, 25°C, 60°C, 100°C, 150°C, 200°C, 250°C, and
300°C. Example:

alter Anhydrite -4.3009 -4.4199 -4.7126 -5.1758 -6.2299 500 500 500

Values of “500” represent a lack of data at the corresponding temperature.
For a thermo dataset constructed from polynomial expansions, on the other hand,

list instead up to six polynomial coefficients

alter Anhydrite 4186 2.475 -0.001305 -85377 0 -794.4

You can optionally append a temperature range of validity, in Kelvins, for the polynomial:

alter Anhydrite 4186 2.475 -0.001305 -85377 0 -794.4 TminK= 293 TmaxK= 383

Absent a range, the polynomial is taken to span the principal temperatures. You may
adjust a reaction’s temperature range without specifying polynomial coefficients, but
setting only coefficients resets the temperature range.

For a surface complex, use the “alter” command to set log K, its temperature
derivative, or both

alter >(w)FeOCa+ logK = 6.0 dlogK/dT = 0.02

whereas for an ion exchange reaction, you set the selectivity coefficient ˇ

alter >X2:Ca beta = .033

221



ChemPlugin User’s Guide

directly, rather than as a logarithm. For a sorbing species, set Kd or, for a Freundlich
species, Kf , nf , or both, as follows

alter >Pb++ Kd = .03
alter >Sr++ Kf = .015 nf = .8

For a solid solution, use the “alter” command to set the activity coefficient model,
discrete or continuous behavior, the composition range in terms of the mole fraction
of the most recently specified end member, and parameters for the chosen activity
model, as described for the “solid_solution” command. A solid solution “my_ss” might
be set as a subregular Guggenheim solution with the command

alter my_ss guggenheim a0 = 1 a1 = 2

You may prefer to use the “alter” command to adjust an entry from the thermo database,
and the “solid_solution” command to reconfigure a user-defined solution, but the two
commands work interchangeably for this purpose.

Type “show alter” to list altered species or solutions and their settings; the “unalter”
command reverses the process.

C.2.9 b-dot
b-dot

The “b-dot” command (formerly: “debye-huckel”) causes the program to read the
“thermo.tdat” thermodynamic dataset, which invokes the “B-dot” form of the extended
Debye-Hückel equation to calculate activity coefficients for aqueous species.

C.2.10 balance
balance <on> <basis entry>
balance <off>

Use the “balance” command to specify the basis entry to be used for electrical
charge balancing. The basis entry must be a charged aqueous species. By default,
ChemPlugin balances on Cl�.

The command “balance off” disables ChemPlugin’s charge balancing feature. In
this case, the user is responsible for prescribing charge-balanced input constraints.

C.2.11 carbon-13
carbon-13 <fluid | reactant | segregated mineral> = <value>

Use the “carbon-13” command (also, “13-C”) to set the 13C isotopic composition of
the initial fluid, reactant species (aqueous species, minerals, end members, gases,
or oxides) or segregated minerals. The composition may be set on any scale (e.g.,
PDB), but you must be consistent throughout the calculation. Example:

222



Configuration Commands

carbon-13 fluid = -10, Calcite = +4

Note that you use the name of the corresponding mineral to set the isotopic composition
of an end member.

The commands

carbon-13 remove
carbon-13 off

clear all settings for 13C isotopes from the calculation.
See also the “<isotope>” section above, and the “hydrogen-2”, “oxygen-18”, and

“sulfur-34” commands.

C.2.12 chdir
chdir <directory>

Use the “chdir” command (abbrev.: “work_dir”, “cd”) to change the working directory.
The program reads input scripts relative to the current working directory and writes
output into it. Typing the command “chdir” without an argument causes the program
to display the name of the working directory. The command

chdir ~

changes to the user’s home directory, if one is defined by the operating system.

C.2.13 conductivity

conductivity <conductivity dataset>

Use the “conductivity” command to change the input file of coefficients used to calculate
electrical conductivity. Example:

conductivity "..\my_conductivity.dat"

The dataset name may need to be enclosed in quotes if it contains unusual characters.
Beginning with GWB11, the applications compute electrical conductivity using either
of two different approaches, the USGS and APHA methods; the USGS method is the
default. The required coefficients are defined in the files “conductivity-USGS.dat” and
“conductivity-APHA.dat”, respectively, which are installed in the same directory as the
thermo datasets (commonly “\Program Files\GWB\Gtdata”).

C.2.14 couple

couple <redox species | element(s) | ALL>

223



ChemPlugin User’s Guide

Use the “couple” command to enable any redox coupling reactions that have been
disabled with the “decouple” command. You specify one or more redox species or
elements. For example, the command

couple Carbon

couples all redox reactions involving the element carbon. Argument “ALL” enables all
of the coupling reactions in the thermo dataset.

C.2.15 Courant
Courant = <value | ?>

Use the “Courant” command to constrain the time step according to the Courant
condition. You enter a value for the Courant number, which is the ratio of the distance
fluid travels over a time step to the length of the nodal blocks. If you set a Courant
number of one, then ChemPlugin will select a time step over which the fluid will exactly
traverse the nodal blocks. For a value of 0.5, the fluid will move halfway across the
nodal blocks, and so on. Values greater than one for the Courant number typically
give unstable solutions and are therefore not recommended. By default, ChemPlugin
assumes a Courant number of 1.0. The “?” argument resets the default value.

C.2.16 cpr

cpr = <field variable | ?> <unit> <steady | transient>

Use the “cpr” command to set the heat capacity of the rock (mineral) framework. You
can specify one of the units listed in the Units Recognized appendix; “cal/g°C” is the
default. This value is used during polythermal simulations in calculating the effects
of advective heat transport. The “transient” keyword causes the model to evaluate
the field variable continuously over the course of the simulation, if it is set with an
equation, script, or function.

By default, this variable is set to 0.2 cal/g°C. To restore the default value, type the
command with no argument or with an argument of “?”. To see the current setting of
this variable, type “show variables”.

C.2.17 cpu_max

cpu_max = <value | ?>

Use the “cpu_max” command to limit the amount of computing time a simulation
may take. You set the maximum computing time in seconds, or use a “?” to restore
the default state, which is no prescribed limit. To see the current setting, type “show
variables”.

224



Configuration Commands

C.2.18 cpw

cpw = <field variable | ?> <unit> <steady | transient>

Use the “cpw” command to set in cal/g°C the heat capacity of the fluid. You can specify
one of the units listed in the Units Recognized appendix; “cal/g°C” is the default. This
value is used during polythermal simulations in calculating the effects of advective
heat transport. The “transient” keyword causes the model to evaluate the field variable
continuously over the course of the simulation, if it is set with an equation, script, or
function.

By default, this variable is set to 1.0 cal/g°C. To restore the default value, type the
command with no argument or with an argument of “?”. To see the current setting of
this variable, type “show variables”.

C.2.19 data
data <thermo dataset> <verify>

Use the “data” command to change the input file of thermodynamic data. Example:

data "..\my_thermo.tdat"

The dataset name may need to be enclosed in quotes if it contains unusual characters.
The “verify” option causes the program to read the named dataset only if it has not
already been read.

C.2.20 decouple

decouple <redox species | element(s) | ALL>

Use the “decouple” command to disable the coupling reactions for one or more redox
species, in order to calculate a model assuming redox disequilibrium. The redox
species then become available for use as basis species and may be constrained
independently of the original basis entries. You can disable as many coupling reactions
as you want.

You specify either one or more redox species or elements. For example, the command

decouple Carbon

decouples all redox reactions involving the element carbon. Argument “ALL” disables
all of the coupling reactions in the thermo dataset. Use the “couple” command to
enable coupling reactions, once they have been disabled.

C.2.21 delQ
delQ = <value | ?>

225



ChemPlugin User’s Guide

Use the “delQ” command to control the lengths of time steps taken in a simulation
accounting for reaction kinetics. The program limits how much the ion activity product
Q can change over a step, for each kinetic reaction considered. The setting for “delQ”
is the projected change �Q=Q allowed in the relative value of the activity product.
You can set a larger value to permit longer time steps, or a smaller value to improve
stability. The default setting is 0.1. Type the command with no argument or with an
argument of “?” to restore the default. To see the current setting, type “show variables”.

C.2.22 delxi
delxi = <value | ?> <linear | log>

Use the “delxi” command to set the maximum length (in terms of reaction progress,
which varies from zero to one over the course of the simulation) of the reaction step,
and to specify reaction stepping on a linear or logarithmic scale.

The command

delxi = .1 linear

for example, causes the program, in the absence of other constraints on the reaction
step, to take steps through reaction progress of .1, .2, .3, . . . , 1.0. Alternatively, the
commands

dx_init = .001
delxi = .5 log

produce a path with steps .001, .003, .01, .03, .1, .3, and 1.0 (see the “dx_init”
command).

By default, this variable is set to 1.0 and “linear”, which means in the absence of
other constraints on the reaction step, the ChemPlugin will pass to the end of the
simulation in a single step. To restore the default settings, type the command with no
argument or with an argument of “?”. To see the current settings, type “show variables”.

C.2.23 density

density = <value | ?>
density = <TDS | chlorinity>
density = <batzle-wang | phillips>
density = <external value>

You can use the “density” command to set in g/cm3 the fluid density the program
uses to convert compositional constraints to molality, the concentration unit it carries
internally. If you set the initial NaC composition in mg/l, for example, the program
needs to know the density of the initial fluid to determine NaC molality.

The program by default converts units using a density value it calculates
automatically, as discussed below. This value is sufficient for most purposes, and

226



Configuration Commands

hence it is generally not necessary to set fluid density explicitly. You might, however,
want to set the density if you are working at high temperature, but your analysis is
expressed per liter of solution at room temperature.

You can also use the “density” command to tell the program how to calculate the
default density it uses to convert units, and the fluid density it reports in the simulation
results. The program by default uses the Batzle-Wang equation to figure density, but
you can use the command ”density = phillips“ to select the method of Phillips et al.,
instead.

As well, the program normally figures density as that of an NaCl solution with the
same TDS as the fluid in question, at the temperature of interest. With the command
“density = chlorinity” you can tell the program to instead use the density of an NaCl
solution of equivalent chlorinity.

The “external” keyword allows a client program to specify at any point in a simulation
the fluid density for a ChemPlugin instance to use in its internal calculations. For
example, the command

density = external 1.05

causes the ChemPlugin instance to carry a fluid density of 1.05 g/cm3, instead of
calculating fluid density on its own. By issuing a “density external” command at each
step in a simulation, a client can ensure consistency between its own calculations,
and those performed by a ChemPlugin instance the client has spawned.

To restore automatic calculation, type the command with no argument or with an
argument of “?”. To see the current setting of this variable, type “show variables”.

C.2.24 dual_porosity

dual_porosity = <on | off> <spheres | blocks | fractures> \
<geometry = <spheres | blocks | fractures | ?>> \
<volfrac = <field variable | ?>> \
<Nsubnode = <value | ?>> \
<<radius | half-width> = <field variable | ?> <unit>> \
<diff_length = <field variable | ?> <unit>> \
<porosity = <field variable | ?>> \
<retardation = <field variable | ?>> <steady | transient> \
<diff_coef = <field variable | ?> <unit>> <steady | transient> \
<thermal_con = <field variable | ?> <unit>> <steady | transient> \
<theta = <value | ?>> <reset | ?>

Use the “dual_porosity” command (abbrev: “dual”) to configure stagnant zones in
the simulation, using the dual porosity feature. Enable and disable the feature with
the “on” and “off” keywords. Disabling the feature does not affect other settings, so
re-enabling the feature returns the model to its most recent configuration.

With the “geometry” keyword, you configure the stagnant zone into spheres, blocks,
or a fractured domain, the latter being slabs separated by fractures arrayed along
an arbitrary direction. Alternatively, you can set the three configurations directly with

227



ChemPlugin User’s Guide

keywords “spheres”, “blocks”, and “fractures”. Keyword “volfrac” sets the fraction of
the nodal block’s bulk volume occupied by the stagnant zone.

The “Nsubnode” (or “nx”) keyword sets the number of nodes into which the stagnant
zone within each node will be divided when solving for solute and temperature
distributions. The “radius” (or “half-width”, for blocks and fractures) keyword sets
the zone’s characteristic dimension, in units of distance (see the Units Recognized
appendix; default is cm), and keyword “diff_length” sets the distance (same units) from
the contact with the free-flowing zone over which the model will account for solute
diffusion and heat conduction. Use keywords “porosity”, “retardation”, “diff_coef”, and
“thermal_con” to set values for the porosity, retardation factor, diffusion coefficient,
and thermal conductivity of the stagnant zone. The default unit for the diffusion
coefficient is cm2/s, and thermal conductivity defaults to cal/cm/s/°C units; see the
Units Recognized appendix for a list of options.

By default, the stagnant zone is configured in spheres divided into 5 subnodes. You
must specify a value for the volume fraction of the stagnant zone, as well as one for
the radius (or half-width); the diffusion length defaults to the latter value. The program
uses whatever values are set for the free-flowing zone in the node in question as
default values for the porosity, diffusion coefficient, and thermal conductivity of the
stagnant zone; the retardation factor defaults to a value of one.

The “theta” keyword sets time weighting (0 � � � 1) for the numerical solution of
diffusive transport within the stagnant zone. A weight � D 0 assigns the explicit method,
and larger values invoke an implicit solution. By default, the program chooses �

automatically, using the explicit method unless it would force too many more time
steps than would otherwise be necessary. In that case, the program uses the implicit
method (� D 0:6), which requires more computing effort per time step, but can take
long steps without becoming numerically unstable.

You can append the “transient” keyword when setting several of the parameters:
the diffusion coefficient, thermal conductivity, and retardation factor. If the variable
is defined by an equation, script, or external function, it will then be re-evaluated
continuously over the course of the run.

As an example, the command

dual_porosity geometry = spheres, radius = 50 cm, volfrac = 75%

configures the stagnant zone into spheres of half-meter radius that occupy three-
quarters of the domain. The command

dual_porosity reset

enables the feature after restoring default settings for each keyword.

C.2.25 dump

dump <off>

228



Configuration Commands

Use the “dump” command to eliminate minerals present at the beginning of the reaction
before the program begins to trace the path. Use

dump
dump off

C.2.26 dx_init

dx_init = <value | ?>

Use the “dx_init” command to set the length of the initial time step. You set this value
in terms of reaction progress, which varies from zero to one over the course of the
simulation.

By default, the variable is ignored. To restore the default state, type the command
with no argument or with an argument of “?”. To see the current setting of this variable,
type “show variables”.

C.2.27 dxplot

dxplot = <value | ?>

Use the “dxplot” command to set the interval in reaction progress (which varies from zero
to one over the course of the simulation) between entries in the “ChemPlugin_plot.gtp”
dataset. A value of zero causes the program to write the results after each step
in reaction progress. This variable setting does not apply to reactions paths with
logarithmic reaction stepping (see the “delxi” command), in which case all points in
reaction progress are written to the plot dataset.

By default, this variable is set to 0.005. To restore the default value, type the
command with no argument or with an argument of “?”. To see the current setting of
this variable, type “show variables”.

C.2.28 dxprint

dxprint = <value | ?>

Use the “dxprint” command to set the interval in reaction progress (which varies from zero
to one over the course of the simulation) between entries in the “ChemPlugin_output.txt”
dataset. A value of zero causes the program to write the results after each step in
reaction progress, which can produce large amounts of output This variable setting
does not apply to reactions paths with logarithmic reaction stepping (see the “delxi”
command), in which case all points in reaction progress are written to the plot dataset.

By default, this variable is set to 0.01. To restore the default value, type the command
with no argument or with an argument of “?”. To see the current setting of this variable,
type “show variables”.

229



ChemPlugin User’s Guide

C.2.29 Eh
Eh = <value in volts | ?>

Use the “Eh” command to set Eh in the initial system. Example:

Eh = 200 mV

sets the system’s oxidation state to correspond to an Eh of 0.2 volt. See also the
“activity”, “pH”, “pe”, “fugacity”, “fix”, and “slide” commands.

C.2.30 end-dump

end-dump <off>

Use the “end-dump” command (also: “enddump”) to eliminate minerals present at the
end of the reaction path after the path has been traced. Use

end-dump
end-dump off

This operation can also be accomplished using the command “pickup fluid”.

C.2.31 epsilon

epsilon = <value | ?>

Use the “epsilon” command to set the convergence criterion (dimensionless) for
iterating to a solution of the equations representing the distribution of chemical mass.
By default, this variable is set to 5�10�11. To restore the default value, type the
command with no argument or with an argument of “?”. To see the current setting of
this variable, type “show variables”.

C.2.32 exchange_capacity

exchange_capacity = <value | ?> <units>
exchange_capacity on <type> = <value | ?> <units>

Use the “exchange_capacity” command (abbrev.: “ex_capacity” or “exch_capacity”) to
set the exchange capacitiy (i.e., the CEC) of the system when modeling ion exchange
reactions or sorption according to Langmuir isotherms. For ion exchange reactions,
you set units of electrical equivalents (“eq”, “meq”, and so on) or equivalents per gram
of dry sediment (“eq/g”, “meq/g”, . . . ). For Langmuir reactions, you similarly set a value
in mole units: “mol”, “mmol”, “mol/g”, “mmol/g”. If you set units per gram of sediment,
the program multiplies the value entered by the mass of rock in the system (including
equilibrium and kinetic minerals as well as inert volume) to get the system’s capacity.

230



Configuration Commands

If you read in a surface that sorbs by ion exchange or Langmuir isotherms, you
must set a value for its exchange capacity. If you have set more than one sorbing
surface (using the “surface_data” command), you identify the surface in question by
its “type”. For example

exchange_capacity on IonEx = .0008 eq/g

The “type” associated with each surface is listed at the top of each dataset of surface
reactions. The “type” of the surface represented by the sample dataset “IonEx.sdat”,
for example, is “IonEx”. You can use the “show” command to display the “type” of
each active surface. See also the “surface_data” and “inert” commands.

C.2.33 explain

explain <species | mineral(s) | solid solution(s) | gas(es) | surface species>

Use the “explain” command to get more information (such as the mole weight of a
species, a mineral’s formula, mole volume, and density, or a solid solution’s end-member
minerals) about species, minerals, solid solutions, and gases in the dataset. Example:

explain Analcime

C.2.34 explain_step

explain_step <off>

The “explain_step” option causes the program to report on the Results pane the factor
controlling the length of each time step, whenever the step size is limited by the need
to maintain numerical stability.

C.2.35 extrapolate

extrapolate <on | off>

Use the “extrapolate” option to cause the program to extrapolate log Ks for reactions
forming aqueous species, minerals, and gases to temperatures beyond the data’s
known range of validity. The option should be used with considerable care.

The temperature range of validity for a species’ log K is defined by its temperature
expansion, taken from the thermo dataset. For T -table expansions, it is the span of
principal temperatures at which logKs are not 500, whereas for polynomial expansions,
the range is listed explicity.

In normal operation, the program loads only species with ranges of validity
encompassing the calculation’s temperature range. When the “extrapolate” option is
“on”, in contrast, the program projects to the temperature of interest the log Ks of
species that would not otherwise be loaded.

231



ChemPlugin User’s Guide

Temperature ranges of validity can also be set in the thermo dataset for the virial
coefficients used to calculate “Pitzer” and SIT activity coefficients. The “extrapolate
on” option works in a similar manner in such cases, allowing virial coefficients to be
used at temperatures beyond the coefficients’ known ranges of validity.

C.2.36 fix
fix <unit> <species | gas>

Use the “fix” command to hold the activity of a species, fugacity of a gas, or an activity
ratio constant over the course of a run. The <unit> can be “activity” or “fugacity” (“a”
or “f” for short), “ratio”, “pH”, “pe”, or “Eh”, or it can be omitted. Examples:

fix pH
fix a H+
fix f O2(g)
fix ratio Ca++/Na+^2

C.2.37 flash
flash <on | off | fluid | system>

Use the “flash” command to set a “flash” model in which the original fluid (or fluid and
minerals, if keyword “system” is used) is removed over the course of the reaction path.
Keywords “on” and “fluid” are synonymous. The command “flash” without an argument
is the same as “flash fluid”. Generally, the fluid is replaced by a reactant fluid. Use

flash
flash system
flash off

C.2.38 flow-through

flow-through <off>

Use the “flow-through” command to turn on or off the flow-through option by which
mineral precipitates are isolated from back-reaction. Use

flow-through
flow-through off

C.2.39 flush
flush <off>

232



Configuration Commands

Use the “flush” command to turn on or off the flush option by which fluid reactants
displace existing fluid from the system over the course of the reaction path. Use

flush
flush off

C.2.40 fugacity

fugacity <gas> = <value | ?>

Use the “fugacity” command (abbrev.: “f”) to set gas fugacities (on an atm scale) in
the initial system. Examples:

fugacity O2(g) = .2
f CO2(g) = 0.0003
log f S2(g) = -30

Use “?” to unset a fugacity value: See also the “activity”, “ratio”, “pH”, “Eh”, “pe”, “fix”,
and “slide” commands.

C.2.41 h-m-w
h-m-w

Usethe“h-m-w”command(abbrev.:“hmw”)tosettheprogramtocalculatespecies’activity
coefficients by using the Harvie-Møller-Weare equations. Executing this command
automatically sets the input dataset of thermodynamic data to “thermo_hmw.tdat”.
Note that dataset “thermo_hmw.tdat” supports calculations at 25°C only.

C.2.42 heat_source

heat_source = <field variable | ?> <unit> <steady | transient> \
<Tmin = <value | min | ?> <unit>> <Tmax = <value | max | ?> <unit>>

heat_source = <off | on | reset>

Use the “heat_source” command (also: “heat_src”) to set the rate of internal heat
production within the medium. You can specify one of the units listed in the
Units Recognized appendix; “cal/cm3/s” is the default. The “transient” keyword causes
the model to evaluate the field variable continuously over the course of the simulation,
if it is set with an equation, script, or function. By default, the program does not account
for internal heat production. The “?” argument resets the default value of zero.

The “Tmin” and “Tmax” keywords (also: “temp_max”, “temp_min”) prescribe the
allowabletemperaturerangeforthesimulation.Setthekeywordstospecifictemperatures,
or to “min” or “max”, which respectively represent the lowest and highest temperatures
considered in the thermo dataset, as loaded at run time. If you set the temperature
range directly, it will be bracketed to that of thermo dataset. For example, the command

233



ChemPlugin User’s Guide

heat_source Tmin = -1000 C, Tmax = 1000 C

is functionally the same as

heat_source Tmin = 0 C, Tmax = 300 C

when the “thermo.tdat” dataset is loaded, since the dataset’s range is 0°C to 300°C.
The upper and lower temperature bounds serve two purposes. First, the simulation

will give an error message and stop if temperature at any point in the domain falls
more than 5°C less than the minimum value, or exceeds the maximum value by
more than this amount. Second, unless the “extrap” option is set, the model will load
for the simulation only those species for which log K values are available in the
thermodynamic dataset over the specified temperature range.

The temperature bounds specified with the “Tmin” and “Tmax” keywords are the
same as those set with the “span” command: The command

heat_source Tmin = 20 C, Tmax = 100 C

may be equivalently expressed

span 20 C to 100 C

as long as the heat source option is enabled.
Values for the keywords default to the temperature span of the thermodynamic

database, as set in the database header. Keyword “off” disables the heat source,
leaving the source rate and temperature range intact, and keyword “on” re-enables
the heat source; “reset” disables the source and discards any settings for the source
rate and temperature range.

C.2.43 hydrogen-2

hydrogen-2 <fluid | reactant | segregated mineral> = <value>

Use the “hydrogen-2” command (also, “2-H”) to set the 2H isotopic composition of
the initial fluid, reactant species (aqueous species, minerals, end members, gases,
or oxides) or segregated minerals. The composition may be set on any scale (e.g.,
SMOW), but you must be consistent throughout the calculation. Example:

hydrogen-2 fluid = -120, Muscovite = -40

Note that you use the name of the corresponding mineral to set the isotopic composition
of an end member.

The commands

234



Configuration Commands

hydrogen-2 remove
hydrogen-2 off

clear all settings for 2H isotopes from the calculation.
See also the “<isotope>” section above, and the “carbon-13”, “oxygen-18”, and

“sulfur-34” commands.

C.2.44 inert
inert = <value | ?> <units>

Use the “inert” command to set the volume of non-reacting space in the system. You
may set a value in units of volume, including cm3, m3, and l , as well as volume%
and “vol. fract.”. The default setting is zero and the default unit is cm3.

Assuming you have not set a value for the initial fluid fraction in the system using the
“porosity” command, the program figures the porosity over the course of the calculation
as a derived variable. Specifically, it divides the fluid volume by the sum of the fluid
volume, mineral volume, and inert volume, and reports this value as a result.

When you have set a value for initial porosity with the “porosity” command, on the
other hand, the program works in the contrary sense. In this case, it calculates the
inert volume as that required to form a system of the specified initial porosity; the
program now ignores any entry you may have set using the “inert” command.

In ChemPlugin, you can use this command to set inert volume "on the fly", as
the client program progresses through the time marching loop. To do so, once a
ChemPlugin instance has been initialized, send the instance an “inert” command using
the “Config” member function:

cpi.Config("inert = 12 vol%");

In this way, the client program can, for example, propagate changes in fluid saturation
to a ChemPlugin instance.

To restore the default state, type the command with no argument or with an argument
of “?”. To see the current setting of this variable, type “show”.

C.2.45 isotope_data

isotope_data <dataset>

Use the “isotope_data” command (also: “idata”) to set the name of the database
containing isotope fractionation factors for species, minerals, and gases. Example:

isotope_data Isotope.mydata

235



ChemPlugin User’s Guide

C.2.46 itmax
itmax = <value | ?>

Use the “itmax” command to set the maximum number of iterations that may be taken
in an attempt to converge to a solution for the equations representing the distribution
of chemical mass. By default, this variable is set to 999. To restore the default value,
type the command with no argument or with an argument of “?”. To see the current
setting of this variable, type “show variables”.

C.2.47 Kd
Kd <off>

The “Kd” command controls whether the program calculatesKd distribution coefficients
for sorbing components, in units of liters per kg sediment mass. This calculation
requires that the mineral mass in the system (as specified for individual minerals
and/or in terms of inert volume) be set correctly.

C.2.48 kinetic
kinetic <species | mineral | end member | gas> <variable> = <value>
kinetic <species | mineral | end member | gas> <variable> = <field variable> \

<steady | transient>
kinetic <species | mineral | end member | gas> <apower | mpower(species)> = <value>
kinetic <redox(label)> <variable> = <value>
kinetic <redox(label)> <variable> = <field variable> <steady | transient>
kinetic <redox(label)> <apower | mpower(species)> = <value>
kinetic <microbe(label)> <variable> = <value>
kinetic <microbe(label)> <variable> = <field variable> <steady | transient>
kinetic <microbe(label)> <apower | mpower(species)> = <value>
kinetic <microbe(label)> <apower | mpower(species)> = <value> \

<apowerA | mpowerA(species)> = <value> \
<apowerD | mpowerD(species)> = <value>

Use the “kinetic” command to set variables defining a kinetic rate law for (1) dissolution
or precipitation of any mineral or end member in the initial system or reactant list, (2) the
association or dissociation of any aqueous or surface complex in the system modeled,
(3) the transfer of gases into or out of an external reservoir, (4) a redox reaction,
including those promoted by catalysis or enzymes, or (5) a microbial metabolism.

In the first three cases, you identify the kinetic reaction by the name of the mineral,
end member, species, or gas involved. In the case of a redox reaction, you set a
label that begins with the characters “redox”, such as “redox-1” or “redox-Fe”. For a
microbial reaction, set a label that starts with “microbe”, such as “microbe-Ecoli”.

The rate law you specify in a “kinetic” command, by default, applies to the dissolution
of a mineral or end member, dissociation of a complex, dissolution of a gas, or
forward progress of a redox or microbial reaction. The synonymous keywords “forward”,

236



Configuration Commands

“dissolution”, and “dissociation” set this behavior. Including in a “kinetic” command
the keyword “reverse” or its synonyms “precipitation”, “complexation”, “association”,
or “exsolution” invokes the opposite behavior. In this case, the rate law applies to the
reverse reaction: mineral or end member precipitation, complex association, or gas
exsolution.

You can append the “transient” keyword when setting the following field variables:
rate constant, specific surface area, activation energy, pre-exponential factor, nucleus
area, and critical saturation index. If the variable is defined by an equation, script, or
external function, it will then be re-evaluated continuously over the course of the run.

See also the “react” and “remove reactant” commands.

The following paragraphs apply to all types of kinetic reactions. You set the rate con-
stant either directly using the “rate_con” keyword, or by setting an activation energy
and pre-exponential factor with keywords “act_en” and “pre-exp”. In the absence of
promoting and inhibiting species (see next paragraph), you set the rate constant and
preexponential factor in (1) mol/cm2 s for mineral, end member, and gas transfer
reactions, (2) molal/s or molal/cm2 s (the latter when accounting for heterogeneous
catalysis) for complexation and redox reactions, and (3) mol/mg s for microbial reactions.
The activation energy is specified in J/mol. Example:

kinetic "Albite low" rate_con = 1e-15

You can set “rate_con”, “act_en”, and “pre-exp” as field variables (see the Heterogeneity
appendix to the GWB Reactive Transport Modeling Guide).

You use the “apower” or “mpower” (also “apow” or “mpow”) keyword to specify
any promoting or inhibiting species in the kinetic rate law. Keyword “apower” sets
the exponent of a species activity, and “mpower” the exponent of a species molality.
Promoting species have positive powers, and the powers of inhibiting species are
negative. For example, the command

kinetic "Albite low" apower(H+) = 1

sets HC as a promoting species, the activity of which is raised to a power of one.
You can use aqueous species, minerals (represented by activity, which is one, or

molality), end members (activity or mole fraction), gas species (fugacity or partial
pressure), surface complexes (molal concentration), and solvent water (activity) as
promoting and inhibiting species. When setting an end member, use keyword “xpower”
to set the rate law in terms of mole fraction. When setting a gas, use keyword “fpower”
to set the rate law in terms of fugacity, and “ppower” to use partial pressure, instead.
The generic keyword “power” sets the activity of the solvent or an aqueous species,
the activity of an end member, the fugacity of a gas, and the molality of a surface
species.

The “order1” and “order2” keywords set nonlinear rate laws. Keyword “order1”
represents the power of the Q=K term, and “order2” represents the power of the (1 -
Q=K/ term.

237



ChemPlugin User’s Guide

Use the “rate_law” keyword to set the form of the kinetic rate law for a specific
mineral, end member, species, gas, redox reaction, or microbial metabolism. You may
set the keyword equal to (1) a character string containing the rate law, (2) the name of
a file containing a basic-like script, or (3) the name of a function in a library. The name
of a file containing a rate law script must end in “.bas”. To specify a function from a
library, set the name of a dynamic link library (DLL) separated from the function name
by a colon (“:”), such as “rate_laws.dll:my_ratelaw”; the library file must end in “.dll”.
To return to the program’s built-in rate law, enter “rate_law = off” or “rate_law = ?”.

The following paragraphs apply to dissolution and precipitation reactions. You set the
specific surface area of a kinetic mineral or end member (in cm2/g) with the “surface”
keyword. For example,

kinetic "Albite low" surface = 1000

The “cross-affinity” option lets you use the saturation state of one mineral to model the
reaction rate of another (or of an end member), as is sometimes useful for example in
studying glass dissolution. To do so, you use the “xaffin” option. For (a hypothetical)
example, the command

kinetic Quartz xaffin = Cristobalite

causes the program to calculate the reaction rate of quartz according to the fluid’s
saturation state with respect to cristobalite. The command

kinetic Quartz xaffin = OFF

turns off the option.
Finally, you use the “nucleus” and “critSI” keywords to set the area available for

nucleation (in cm2/cm3 fluid volume) and the critical saturation index above which the
mineral or end member can nucleate. Each of these values, by default, is zero.

Keywords “surface”, “nucleus”, and “critSI” can be set as field variables (see the
Heterogeneity appendix to the GWB Reactive Transport Modeling Guide).

The following paragraphs apply to reactions for aqueous and surface complexes.
When you specify a kinetic reaction for the association of an aqueous complex or
surface complex, or its dissociation, you can set the complex’s initial concentration
directly. The concentration can be set heterogeneously, as a field variable. If you do
not specify an initial concentration, or set an entry of “?”, the program takes the
complex at the start of the simulation to be in equilibrium with the initial fluid.

You specify the initial concentration within a “kinetic” command or as a separate
command line. For example, the commands

kinetic AlF++ rate_con = 3.3e-6, mpow(AlF++) = 1
AlF++ = 1 umol/kg

238



Configuration Commands

are equivalent to

kinetic AlF++ 1 umol/kg rate_con = 3.3e-6, mpow(AlF++) = 1

Either case defines a kinetic reaction for decomposition of the AlFCC ion pair, setting
it initially to a free concentration of 1 �mol kg�1.

The following paragraphs apply to gas transfer reactions. Use the “f_ext” keyword to
specify the fugacity of the gas in question in the external reservoir, or keyword “P_ext”
to set its partial pressure. In the latter case, you may append a pressure unit; the
default is bar. Keyword “contact” sets the contact area between fluid and external
reservoir, in cm2/kg of water. Example:

kinetic CO2(g) f_ext = 10^-3.5, contact = 10

Both values can be set as field variables, as described in the Heterogeneity appendix
to the GWB Reactive Transport Modeling Guide.

If you do not set a value for the gas’ external fugacity, or set “f_ext = ?”, the program
uses the fugacity in the initial fluid, at the start of the simulation, and the external
fugacity.

The following paragraphs apply to redox reactions. You set the form of the redox
reaction to be considered as a character string, using the “rxn” (or “reaction”) keyword.
For example,

kinetic redox-1 rxn = "Fe++ + 1/4 O2(aq) + H+ -> Fe+++ + 1/2 H2O"

To specify that the reaction be promoted by a heterogeneous catalyst, set keyword
“catalyst” to the name of the catalyzing mineral, or simply to “on”. In the former case,
you use keyword “surface” to set the specific surface area of the catalytic mineral (in
cm2/g). If you have set “catalyst = on”, however, you use the “surface” keyword to set
total catalytic area, in cm2. Setting “catalyst = off” disables the catalysis feature.

To set an enzymatically promoted reaction, set keyword “me” to the name of the
aqueous species serving as the enzyme, or simply to the value to be used as the
enzyme’s molality. In the former case, the program tracks the enzyme molality mE

over the course of the simulation from the calculated distribution of species. If you
have set a numeric value for mE using the “mE” keyword, the program uses this value
directly. You may alternatively specify the enzyme species or its activity aE using
keyword “aE”, in which case variables mE , mA, and mP in the rate law are replaced
by the activities aE , aA, and aP .

For an enzymatic reaction, you further set the half-saturation constants KA and KP

for the forward and reverse reactions in molal with the “KA” and “KP” keywords. You
must set a value for KA, but may omit KP , in which case the mP /KP term in the rate
law will be ignored. Setting “enzyme = off” disables the enzyme feature.

239



ChemPlugin User’s Guide

The following paragraphs apply to microbial reactions.Yousettheformofthemetabolic
reaction using the “rxn” (or “reaction”) keyword, in the same manner as with redox
reactions. For example,

kinetic microbe-1 rxn = "CH4(aq) + 2 O2(aq) -> HCO3- + H+ + H2O"

Set the half-saturation constants KD and KA for the electron donating and accepting
reactions with the “KD” and “KA” keywords. These values default to zero.

You set the powers of species in the numerator of the rate law with the “mpower”
keyword, as with other types of kinetic reactions. Use keywords “mpowerD” and
“mpowerA” (or “mpowD” and “mpowA”) to set the powers pD, etc., of species from the
electron donating and accepting reactions, respectively, within the product functions
in the rate law’s denominator. For example,

kinetic microbe-1 mpower(CH4(aq)) = 1, mpowerD(CH4(aq)) = 1

sets the power of the electron-donating species CH4(aq) to one in both the rate law
numerator and denominator. Keywords “PKD” and “PKA” set the overall powers pKD

and pKA of the electron donating and accepting terms in the denominator of the rate
law; by default, these are one.

You set the free energy �GATP of ATP hydrolysis (in kJ/mol) with the “ATP_energy”
keyword, and the value of nATP with keyword “ATP_number”. These values default to
zero.

Use the “biomass” keyword to set the initial biomass concentration, in mg/kg. You
can set this value as a field variable (see the Heterogeneity appendix to the GWB
Reactive Transport Modeling Guide).

The “growth_yield” keyword sets the microbe’s growth yield in mg biomass/mol of
reaction progress, and “decay_con” sets its decay constant in s�1; both values default
to zero.

C.2.49 log

log <variable> = <value>

Use the “log” command to set variables on a logarithmic scale. Examples:

log fugacity O2(g) = -65
log activity U++++ = -10

C.2.50 mobility

mobility = <surface type> <field variable> <steady | transient>

Use the “mobility” command to set up a complexing surface in your model as a mobile
colloid. A mobile colloid is composed of the mineral (or minerals) associated with

240



Configuration Commands

a complexing surface, as well as the ion complexes present on that surface. Only
datasets with model type “two-layer”, “three-layer”, or “cd-music” as set in the dataset
header are surface complexation models, and hence only those datasets can be used
to form a mobile colloid.

Mobility refers to the fraction of the surface in question that can move in the model
by advection and dispersion. A surface with a mobility of one moves freely, whereas
a mobility of zero sets the surface to be stationary. Intermediate values arise, for
example, when some of the surface is attached to the medium, or when colloid motion
is impeded by electrostatic interactions. By default in the software the mobility of any
surface is zero.

To set a mobile colloid, begin by reading in a surface complexation dataset using the
“surface_data” command. Then, use the “mobility” command, referencing the surface’s
label, to set the colloid’s mobility. The label is given at the head of the surface dataset,
on a line beginning “Surface type”. The label in dataset “FeOH.sdat”, for example, is
“HFO”. If you omit the label, the program will assume you are referring to the surface
complexation dataset most recently read.

You can define the mobility as a field variable, which means you can have the
program calculate mobility using an equation, script, or compiled function you provide.
When you set the “transient” keyword, the program upon undertaking each time step
in the simulation evaluates mobility at each nodal block. In the “steady” case, which
is the default, the program evaluates mobility at each block just once, at the start of
the run.

Example:

surface_data FeOH.sdat
mobility HFO = 100%

where “HFO” is the label for the surface defined by dataset “FeOH.sdat”.
Restore the default behavior of immobility by entering a command such as

mobility HFO ?

C.2.51 no-precip

no-precip <off>

Usethe“no-precip”command(also:“noprecip”)topreventnewmineralsfromprecipitating
over the course of a simulation. By default, they are allowed to precipitate. Use:

no-precip
no-precip off

See also the “precip” command.

241



ChemPlugin User’s Guide

C.2.52 nswap

nswap = <value | ?>

Use the “nswap” command to set the maximum number of times that the program may
swap entries in the basis in an attempt to converge to a stable mineral assemblage. By
default, this variable is set to 30. To restore the default value, type the command with
no argument or with an argument of “?”. To see the current setting of this variable,
type “show variables”.

C.2.53 oxygen-18

oxygen-18 <fluid | reactant | segregated mineral> = <value>

Use the “oxygen-18” command (also, “18-O”) to set the 18O isotopic composition of
the initial fluid, reactant species (aqueous species, minerals, end members, gases,
or oxides) or segregated minerals. The composition may be set on any scale (e.g.,
SMOW), but you must be consistent throughout the calculation. Example:

oxygen-18 fluid = -10, Quartz = +15

Note that you use the name of the corresponding mineral to set the isotopic composition
of an end member.

The commands

oxygen-18 remove
oxygen-18 off

clear all settings for 18O isotopes from the calculation.
See also the “<isotope>” section above, and the “carbon-13”, “hydrogen-2”, and

“sulfur-34” commands.

C.2.54 pause

pause

Use the “pause” command to cause the instance to pause temporarily during input.
This command is useful when you are debugging scripts.

C.2.55 pe

pe = <value | ?>

Use the “pe” command to set oxidation state in the initial system in terms of pe.
Example:

242



Configuration Commands

pe = 10

is equivalent to

log activity e- = -10

where “e-” is the electron. Use “?” to unset a pe value: See also the “activity”, “Eh”,
“pH”, “fugacity”, “fix”, and “slide” commands.

C.2.56 permeability

permeability <intercept = field variable | ?> <unit> <steady | transient> \
<porosity = field variable | ?> <steady | transient> \
<mineral = field variable | ?> <steady | transient>

You use the “permeability” command to set the correlation by which the program
calculates sediment permeability. ChemPlugin calculates this value as a reported
variable consistent with X1t and X2t, but does not use it in its calculations.

The correlation gives log permeability in any of the units listed in the Units Recognized
appendix (darcys by default) as a linear function of the porosity (expressed as a
volume fraction) of a nodal block and, optionally, the volume fractions of one or more
minerals. The “transient” keyword causes the model to evaluate the coefficient in
question continuously over the course of the simulation, if it is set with an equation,
script, or function.

Examples:

permeability intercept = -11 cm2 porosity = 15
permeability Kaolinite = -8

The latter command adds a term for the mineral Kaolinite to the existing correlation.
To remove a term from the correlation, set a value of “?”. The entry

permeability Kaolinite = ?

for example, removes the correlation entry for that mineral.
The default correlation is

log k D �5C 15�

where k is permeability in darcys and � is porosity (expressed as a fraction).

243



ChemPlugin User’s Guide

C.2.57 pH

pH = <value | ?>

Use the “pH” command to set pH in the initial system. Example:

pH = 5

is equivalent to

log activity H+ = -5

Use “?” to unset a pH value: See also the “activity”, “Eh”, “pe”, “fugacity”, “fix”, and
“slide” commands.

C.2.58 phrqpitz

phrqpitz

Use the “phrqpitz” command to set the program to calculate species’ activity
coefficients using the Harvie-Møller-Weare equations, as implemented in the USGS
program PHRQPITZ. Executing this command automatically sets the input dataset of
thermodynamic data to “thermo_phrqpitz.tdat”. Note that dataset “thermo_phrqpitz.tdat”
is primarily intended to support calculations at or near 25°C.

C.2.59 pickup

pickup <system => <entire | fluid>
pickup reactants = <entire | fluid | minerals>

Use the “pickup” command to take the results of a reaction path as the starting point
for a new reaction path. You may pick up the entire system, or just the fluid or minerals
resulting from a reaction path, and use this as your new initial system or reactant list.
Default choices are “system” and “entire”. Examples:

pickup
pickup fluid
pickup reactants
pickup reactants = minerals

When you do a simple “pickup” (i.e., “pickup system = entire”), the program retains
within the system all kinetic reactions that were defined in the original path, at the
reactions’ endpoint state. A “pickup fluid” (fully, “pickup system = fluid”) command
retains only the kinetic reactions occurring in the fluid – the kinetic redox and aqueous
complexation reactions – in the new reaction path; kinetic reactions involving minerals,
surfaces, a gas phase, or microbes are discarded.

244



Configuration Commands

Picking up the entire endpoint system, or just the endpoint minerals, as reactants
(i.e., “pickup reactants” or “pickup reactants = minerals”) causes the program to retain
the kinetic reactions involving mineral precipitation and dissolution. In these cases,
the other types of kinetic reactions are discarded. The command “pickup reactants =
fluid” causes the program to discard any kinetic reactions that may be set.

The commands

pickup TDS
pickup density

are obsolete, because releases 7.0 and later of the software calculate the TDS and
density automatically.

C.2.60 pitz_dgamma

pitz_dgamma = <value | ?>

Use the “pitz_dgamma” command to control the relative change in an activity
coefficient’s value the program allows during each Newton-Raphson iteration, when
the Harvie-Møller-Weare activity model has been invoked. By default, the program
allows a 10% change, which corresponds to a value of 0.1.

C.2.61 pitz_precon

pitz_precon = <value | ?>

Use the “pitz_precon” command to control the maximum number of passes the
program takes through the pre-conditioning loop before beginning a Newton-Raphson
iteration, when a virial activity model (Harvie-Møller-Weare or SIT) has been invoked.
By default, the program makes up to 10 passes. In cases of difficult convergence,
counter-intuitively, it can sometimes be beneficial to decrease this value.

C.2.62 pitz_relax

pitz_relax = <value | ?>

The “pitz_relax” command controls under-relaxation when evaluating the Harvie-
Møller-Weare equations. The program at each Newton-Raphson iteration assigns
activity coefficients as a weighted average of the newly calculated value and the
corresponding value at the previous iteration level. Setting pitz_relax to zero eliminates
under-relaxation, so the newly calculated values are used directly; a value of one, in
contrast, should be avoided because it would prevent the activity coefficients from
being updated. By default, the program carries an under-relaxation factor of 0.5.

245



ChemPlugin User’s Guide

C.2.63 plot

plot <character | binary> <on | off>

Use the “plot” command to set the format of the plot interface dataset. The dataset is
written in XML, a standard format that is easy to parse for use with alternative plotting
programs. Numerical data in the dataset can be represented in either standard decimal
notation (keyword "character") for user readability or a binary encoding (keyword
"binary") that maintains full precision of data. The default format, XML with binary
encoded data, also zips the output file to reduce output size and improve file opening
speed. The command “plot off” causes ChemPlugin to bypass writing calculation
results to the “ChemPlugin_plot.gtp” dataset, which is used to pass input to Gtplot.
By default, the program writes output to the dataset. The command “plot on” (or just
“plot”) re-enables the output. To see the current setting, type “show print”.

C.2.64 pluses

pluses <off>

Use the “pluses” command to cause ChemPlugin to simply output a plus sign (“+”)
each time it iterates to a solution, rather than printing a banner showing the number
of iterations required and final residual value.

C.2.65 porosity

porosity = <field variable | ?>

Use the “porosity” command to set (as a volume fraction) the initial porosity of the
system. Porosity, the fraction of the system occupied by fluid, is the ratio of fluid
volume to the sum of fluid, mineral, and inert volume.

The examples

porosity = 0.30
porosity = 30%

are equivalent.
When you specify the porosity, the program will figure the difference between the

volume of a system of the given porosity and fluid volume, and the volume taken
up initially in the system by minerals and fluid. The program assigns this difference
as inert, non-reactive volume (see the “inert” command). In this case, the program
ignores any settings that may have been made with the “inert” command.

When you do not specify an initial porosity with the “porosity” command, on the
other hand, the program calculates it from volumes in the system of fluid, minerals,
and inert space. To restore this default behavior, enter the command with an argument
of “?”.

246



Configuration Commands

C.2.66 precip

precip <off>

Use the “precip off” command to prevent new minerals from precipitating over the
course of a simulation. By default, they are allowed to precipitate. Use

precip
precip off

See also the “no-precip” command.

C.2.67 press_model

press_model <Tsonopoulos | Peng-Robinson | Spycher-Reed | default | off>

The “press_model” command (also: “pressure_model”) lets you control the method
used to calculate fugacity coefficients and gas partial pressures. Three pressure
models are coded in the software: Tsonopoulos, Peng-Robinson, and Spycher-Reed,
as described in the GWB Essentials Guide.

By default, the pressure model is taken from the header lines of the thermo dataset
in use, but you can use the “press_model” command to override the default setting.
Keywords “Tsonopoulos”, “Peng-Robinson”, and “Spycher-Reed” set the pressure
model directly (you need only enter the first three letters), whereas “default” returns
to the setting in the thermo dataset, and “off” disables the feature, forcing all fugacity
coefficients to one.

Examples:

press_model Peng-Robinson
press_model default

C.2.68 pressure

pressure <value> <unit>

The “pressure” command (also: “P”) allows the client program to control the value
of fluid pressure used to calculate the fluid density. The command, in other words,
controls compression of the fluid. The pressure setting also figures into the calculation
of gas fugacity coefficients.

The setting serves no other purpose. Specifically, changing the pressure setting
does not affect the log Ks or the determination of activity coefficients.

Examples:

pressure 1
pressure 10 MPa

247



ChemPlugin User’s Guide

By default, the pressure carried is taken from the value given in the thermo dataset
for the temperature of interest, interpolated as necessary. The default unit is bar.

C.2.69 print

print <option> = <long | short | none>
print <off | on>
print <numeric | alphabetic>

Use the “print” command (also: “printout”) to control the amount of detail to be written into
the “ChemPlugin_output.txt” dataset. For example, the dataset can contain information
about each aqueous species, information on only species with concentrations greater
than 10�8 molal, or no species information.

Options, which may be abbreviated to three letters, and their default settings are:

species short
surfaces long
saturations short
gases long
basis none
orig_basis long
elements long
reactions none
stagnant none

The “print” command can also be used to arrange entries in the output dataset either
numerically or alphabetically:

print numeric
print alphabetic

To see the current print settings, type “show print”. Finally, the command “print off”
causes ChemPlugin to bypass writing calculation results to the “ChemPlugin_output.txt”
dataset. By default, the program writes to the datasets. The command “print on” (or
just “print”) re-enables the output.

C.2.70 pwd

pwd

The “pwd” command returns the name of the current working directory. The command
has the same effect as typing “show directory”. See the “chdir” command.

C.2.71 ratio
ratio <species ratio> = <value | ?>

248



Configuration Commands

Use the “ratio” command to constrain an activity ratio in the initial system. Example:

swap Ca++/Na+^2 for Ca++
ratio Ca++/Na+^2 = 0.2

Use “?” to unset a ratio value: See also the “activity”, “pH”, “Eh”, “pe”, “fugacity”, “fix”,
and “slide” commands.

C.2.72 react
react <amount> <unit> <as <element symbol>> \

<species | mineral | end member | gas | oxide> <cutoff> = <value>

Use the “react” command (abbrev.: “rct”) to define the reactants for the current
simulation. To set a kinetic rate law for a reactant, use the “kinetic” command.

Units for the amount of reactant to add over a reaction path can be:

mol mmol umol nmol
kg g mg ug ng
eq meq ueq neq
cm3 m3 km3 l
mol/kg mmol/kg umol/kg nmol/kg
molal mmolal umolal nmolal
mol/l mmol/l umol/l nmol/l
g/kg mg/kg ug/kg ng/kg
wt% "wt fraction"
g/l mg/l ug/l ng/l
eq/kg meq/kg ueq/kg neq/kg
eq/l meq/l ueq/l neq/l

Units of mass or volume can be expressed per volume of the porous medium. Examples:

mol/cm3 g/cm3
mmol/m3 ug/m3
volume% "vol. fract"

Units of mass or volume can be set as absolute rates by appending “/s”, “/day”, “/yr”,
or “/m.y.”. For example,

mmol/s g/day cm3/yr
mol/kg/s mg/kg/day cm3/kg/yr

Use the “as” keyword to specify reactant masses as elemental equivalents. For
example, the command

react 10 umol/kg CH3COO- as C

249



ChemPlugin User’s Guide

specifies 5 umol/kg of acetate ion, since each acetate contains two carbons, whereas

react 20 mg/kg SO4-- as S

would cause the program to add 59.9 mg/kg of sulfate, since the ion’s mole weight is
about 3 times that of sulfur itself.

You can set a cutoff to limit the amount of a reactant. For example, if you set the
amount of a reactant to two moles and set a cutoff of one, then ChemPlugin will add
one mole of the reactant over the first half of the path and none over the second half.
Enter the cutoff value in the same units as the amount of reactant. Examples:

react 10 grams Quartz
react 1e-2 mol Muscovite cutoff = .5e-2
react .01 mol/day HCl

See also the “kinetic” and “remove reactant” commands.

C.2.73 reactants
reactants times <value>

Use the “reactants” command to vary the total amounts of the reactants by a given
factor.

Example:

reactants times 1/10

C.2.74 read
read <dataset>

Use the “read” command to begin reading commands from a script stored in a dataset.
Example:

read Seawater

Control returns to the user after the script has been read, unless the script contains
a “quit” command. You can also use the “read” command in place of the “data” or
“surface_data” command to read a thermo or surface reaction dataset.

When typing a “read” command, you can use the spelling completion feature
to complete dataset names: touch “[tab]” or “[esc]” to cycle through the possible
completions, or Ctrl+D to list possible completions.

250



Configuration Commands

C.2.75 remove
remove <basis specie(s)> <solid solution(s)> <reactant(s)>
remove basis <basis specie(s)>
remove solid_solution <solid solution(s)>
remove reactant <reactant(s)>

Use the “remove” command (also: “rm”) to eliminate one or more basis entries or
reactants from consideration in the calculation. Example:

remove Na+
remove Quartz Calcite
remove reactant H2O

Components can be reentered into the basis using the “swap”, “add”, “activity”, and
“fugacity” commands. You can also use the “remove” command to remove solid
solutions configured in a run (but not those set in the thermo dataset):

remove solid_solution mySS

C.2.76 report

report <option>
report set_digits <value>

Oncetheprogramhascompletedacalculation,youcanusethe“report”commandtoreturn
aspects of the calculation results. For arguments available, see the Report Command
appendix to this User’s Guide.

C.2.77 reset
reset
reset system
reset reactants
reset variables

Use the “reset” command to begin defining the chemical system again with a clean
slate. Your current settings will be lost, and all options will be returned to their default
states. The command, however, does not alter the setting for the thermo dataset.
The “reset system” command resets only the initial system. Similarly, typing “reset
reactants” resets the reactant system, and “reset variables” sets each settable variable
to its default value.

C.2.78 resize
resize <system | fluid | minerals | inert | rock> <value> <unit | times>

251



ChemPlugin User’s Guide

Use the “resize” command once a ChemPlugin instance has been initialized to change
the volume extent of the entire system, or just that of the fluid, mineral, inert, or rock
fraction. The latter option comprises the minerals in the system plus any inert volume.

You may set a value in terms of a volume unit: cm3, m3, km3, or liters

resize system 100 m3
resize fluid 20 L

You can also use the “times” keyword to scale the target by a given factor. The
command

resize system times 2

for example, doubles the volume extent of the system. Default settings are “system”
as the target, and “cm3” for the unit.

Note the “resize” command can be executed only after the instance has been
initialized by calling the “Initialize()” member function. Running the command before
initialization has no effect on the instance’s volume extent.

C.2.79 save
save <dataset> <hex>

Use the “save” command to write the current chemical system into a dataset in
ChemPlugin format commands. The dataset can be used as an ChemPlugin input
script. Examples:

save
save kspar.rea

The optional keyword “hex” causes the program to output numbers as hexadecimal
values.

C.2.80 script

script
script end

Use the “script” command to mark the beginning, and optionally the end, of a control
script. Control scripts differ from standard input files in that they can contain not only
ChemPlugin commands, but control structures such as loops and if-else branches.
Control scripts follow the Tcl syntax, described in www.tcl.tk and mini.net/tcl, as well
as several widely available textbooks.

Withinacontrolscript,filenamesarewrittenwithdoublerather thansinglebackslashes.
For example, a “read” command might appear as

252



Configuration Commands

read GWB_files\\My_file.rea

within a control script.

C.2.81 segregate

segregate <mineral(s)>
segregate <mineral> <value>
segregate <mineral> <initial value> <final value>
segregate <mineral> <value> Xi = <value> <value> Xi = <value>

The “segregate” command causes minerals to be isolated from isotopic exchange over
the course of a reaction path. By default, a mineral in the equilibrium system remains
in isotopic equilibrium with the fluid and other minerals. A segregated mineral, on the
other hand, changes in isotopic composition only when it precipitates from solution; it
alters the system’s composition only if it dissolves. Example:

segregate Quartz Calcite "Maximum Microcline"

Optionally, a fraction of a mineral’s mass may be isotopically segregated, and that
fraction may vary linearly with reaction progress. Examples:

segregate Quartz 100%, Muscovite 7/10
segregate Ca-Saponite 100% 0%
segregate Ca-Saponite 80% Xi = .3, 20% Xi = .7

In the latter example, the program segregates 80% of the mass of Ca-Saponite until
the reaction progress variable Xi reaches .3, decreases the segregated fractionation
until it reaches 20% when Xi equals .7, and then holds the value constant until the
end of the path. To display the isotopically segregated minerals, type “show isotopes”.

Note, you use the name of the corresponding mineral to segregate a solid solution
end member.

C.2.82 show
show <option>
show <aqueous | minerals | solid_solutions | gases | oxides | surfaces> \

<with | w/> <basis entry | string>

253



ChemPlugin User’s Guide

Use the “show” command to display specific information about the current system or
database. The options are:

show show all show altered
show aqueous show basis show commands
show couples show directory show elements
show gases show initial show isotopes
show minerals show oxides show printout
show reactants show show show solid_solutions
show suppressed show surfaces show system
show variables

The command “show show” gives a list of show command options. When you type
“show aqueous” (or “minerals”, “solid_solutions”, “gases”, “oxides”, or “surfaces”), the
program lists all entries of that type in the thermo database. The “solid_solutions”
option additionally includes solutions defined locally. A long form lets you limit the
query to entries composed of a particular basis species or containing a text string in
the name:

show aqueous with Al+++
show minerals w/ chal

There is also a compound form of the “show couples” command:

show coupling reactions

This command produces a complete list of the redox couples, in reaction form.

C.2.83 simax
simax = <value | ?>

The “simax” command sets in molal units the maximum value of the stoichiometric
ionic strength used in calculating water activity when Helgeson’s B-dot Debye-Hückel
model is employed. By default, this variable is set to 3 molal. To restore the default
value, type the command with no argument or with an argument of “?”. To see the
current setting of this variable, type “show variables”.

C.2.84 slide
slide <unit> <species | gas> to <value>

Use the “slide” command to linearly adjust the activity of the specified species, fugacity
of the gas, or an activity ratio toward <value>, which is attained at the end of the path.
Note that the interpolation is made linearly on the logarithm of activity or fugacity if
<value> is set as a log, and that <unit> can be “activity” or “fugacity” (“a” or “f” for
short), “ratio”, “pH”, “pe”, or “Eh”, or omitted. Examples:

254



Configuration Commands

slide pH to 5
slide activity Cl- to 2/3
slide f CO2(g) to 10^-3.5
slide log f O2(g) to -65

C.2.85 solid_solution

solid_solution <name = <label>> <type> <discrete | continuous> \
<<mineral> tag = <label>> <contains> <<mineral> tag = <label>> \
<from <value>> <to <value>> <step = <value>> <<variable> = <value>>

solid_solution <solid solution> <options>
solid_solution remove <solid solution>

Use the “solid_solution” command (abbrev.: “solid_soln”) to define binary solid solutions
in addition to any provided in the current thermo database. Supply a name with the
“name” keyword, or simply set one as the first argument.

You can select the type of solid solution, either “ideal” (the default), “site_mixing”,
“guggenheim”, “regular”, “cubic”, or “third_order”. For a site-mixing solution, set the
site number “bsite”, which defaults to 1. For a Guggenheim solution, set dimensionless
parameters “a0”, “a1”, and “a2” or a temperature expansion for their J/mol counterparts
using coefficients “p1”-“p9”, each of which defaults to zero. For the other nonideal
models, similarly, set coefficients “p1”, “p2”, etc., as appropriate. For more information,
see Solid solutions under Configuring the programs in the GWB Essentials Guide
and the Thermo Datasets chapter in the GWB Reference Manual. You can as well
choose whether the solid solution is to be treated as continuous, the default option,
or as a sequence of “discrete” minerals.

You need to specify two end members for a solid solution, each associated with
an abbreviated “tag”. The tag cannot be the name of another entry in the database.
You can set a composition range in terms of the mole fraction of the most recently
referenced end member, using keywords “from” and “to”, as well as a compositional
“step” separating tranches of a discrete solution; by default, composition ranges from
zero to one and the step is one-twentieth of the range. Keyword “contains” may be
inserted for clarity. Examples:

solid_solution name = my_ss Calcite contains Strontianite from 0% to 10% a0= 0.05
solid_solution my_ss Calcite Strontianite from 0 to .1 a0= 0.05
solid_solution Biotite site_mixing Annite Phlogopite bsite= 3

If you don’t specify a solid solution’s name, the app will create one automatically
using the tags for the two end members, separated by a hyphen. If you don’t set a tag
for an end member, the app will pick up the first six characters of the corresponding
mineral’s name. For example, the command

solid_solution Calcite contains Strontianite

255



ChemPlugin User’s Guide

produces a solid solution named “Calcit-Stront”, whereas typing

solid_solution Calcite tag Cc contains Strontianite tag Str

yields the name “Cc-Str”. To redefine the properties of a solid solution, enter the name
followed by the properties to be changed:

solid_solution my_ss a0 = 1 a1 = 2

(You may prefer to use the “alter” command to change solutions defined within the
thermo database; the two commands are functionally equivalent.) The command

solid_solution remove my_ss

discards a previously defined solution.

C.2.86 sorbate
sorbate <exclude | include>

Use the “sorbate” command to tell the program, when considering sorption onto
surfaces (see the “surface_data” command), whether to include or exclude sorbed
species in figuring the composition of the initial system. By default, the program does
not include sorbed species in this calculation. If you set the CaCC concentration to 15
mg/kg, for example, the initial system would contain that amount in the fluid and an
additional amount sorbed onto mineral surfaces. If you type the command “sorbate
include”, however, that amount would apply to the sum of the CaCC sorbed and in
solution.

C.2.87 span

span <value | min | ?> <unit> <to> <value | max | ?> <unit>
span <off | on | reset>

Use the “span” command to configure a ChemPlugin instance to be ready to vary in
temperature when heat is transfered to or from neighboring instances. You set lower
and upper limits to the anticipated variation. The lower limit may be identified with
keyword “from” or “Tmin”, and the upper denoted by “to” or “Tmax”. A value of “?”
unsets the bound in question.

A “span” command is generally required when creating polythermal simulations
involving heat transfer among instances, because an instance cannot know as it
is initialized whether such transfer will occur, or how it will affect temperature. For
example, the commands

256



Configuration Commands

T = 25 C
span to 200 C

cause a ChemPlugin instance to be initialized at 25°C and accept net heat transfer
that warms it to no more than 200°C.

The instance will load only species for which log K values are available in the
thermodynamic dataset across the specified temperature range, unless the “extrap”
option is set. Member function “AdvanceHeatTransfer()” will furthermore return an
error condition if temperature at any point in the domain falls more than 5°C less than
the minimum value, or exceeds the maximum value by more than this amount.

The “span” command can be used for purposes beyond simulating heat transport.
With T -table datasets, simply setting “span = on” without specifying a range forces
the program to load species’ log Ks in polynomial mode. In other words, it will
take log Ks from polynomial fits against temperature to the stability constants in the
thermo dataset, even if the calculation is performed entirely at one of the dataset’s
principal temperatures. Otherwise, an isothermal calculation run at one of the principal
temperatures (commonly 0°C, 25°C, 60°C, . . . ) takes log Ks for aqueous species,
minerals, and so on directly from the values given in the thermo dataset. You can also
use the span command to force two instances at different temperatures to load the
same set of aqueous species, minerals, and so on.

Temperature ranges of validity can also be set in the thermo dataset for the virial
coefficients used to calculate “Pitzer” and SIT activity coefficients. The “span” command
works in a similar manner in such cases, loading only virial coefficients with validity
that spans the calculation’s temperature range.

In any case, you set the bounds to specific temperatures, or to “min” or “max”,
which respectively represent the lowest and highest temperatures considered in the
thermo dataset, as loaded at initialization. If you set the temperature range directly, it
will be bracketed to that of the thermo dataset. For example, the command

span -1000 C to 1000 C

is functionally the same as

span 0 C to 300 C

when the “thermo.tdat” dataset is loaded, since the dataset’s range is 0°C to 300°C.
The temperature bounds set here are the same as those set with the “heat_source”

command: The command

span 20 C to 100 C

may be equivalently expressed

257



ChemPlugin User’s Guide

heat_source Tmin = 20 C, Tmax = 100 C

as long as the heat source option is enabled.
Keyword “off” disables the feature, leaving values for the limits intact, and keyword

“on” re-enables the feature. The “reset” keyword clears the limits, disabling the feature.
By default, the span feature is disabled.

C.2.88 start_date

start_date <value | off>

Use the “start_date” command to set an explicit starting date of the reaction. This
can be used to coordinate the plotting of dated scatter data samples stored in a
GSS spreadsheet on the reaction path in Gtplot. The date should be in the format
“MM/DD/YYYY”. Use “off” to return to the default of not set.

start_date 10/30/2008
start_date off

C.2.89 start_time

start_time <value | off>

Use the “start_time” command to set an explicit starting time of the reaction. This
can be used to coordinate the plotting of timed scatter data samples stored in a
GSS spreadsheet on the reaction path in Gtplot. The time should be in the format
“HH:MM:SS”. Use “off” to return to the default of not set.

start_time 11:30:00
start_time off

C.2.90 step_increase

step_increase = <value | ?>

Use the “step_increase” command to set the greatest proportional increase, from one
step to the next, in the size of the time step. This variable does not apply to reaction
paths with logarithmic reaction stepping (see variable “delxi”).

By default, this variable is set to 2.0. To restore the default value, type the command
with no argument or with an argument of “?”. To see the current setting of this variable,
type “show variables”.

258



Configuration Commands

C.2.91 step_max

step_max = <value | ?>

Use the “step_max” command to limit the number of reaction steps an instance may
take to trace a simulation. Use a “?” to restore the default state, which is no prescribed
limit. To see the current setting, type “show variables”.

C.2.92 suffix
suffix <string>

Use the “suffix” command to alter the names of the output datasets (“ChemPlu-
gin_output.txt”, and “ChemPlugin_plot.gtp”) by adding a trailing string. Example:

suffix _run2

produces output datasets with names such as “ChemPlugin_output_run2.txt”.

C.2.93 sulfur-34
sulfur-34 <fluid | reactant | segregated mineral> = <value>

Use the “sulfur-34” command (also, “34-S”) to set the 34S isotopic composition of
the initial fluid, reactant species (aqueous species, minerals, end members, gases,
or oxides) or segregated minerals. The composition may be set on any scale (e.g.,
CDT), but you must be consistent throughout the calculation. Example:

sulfur-34 fluid = +45, H2S(g) = -2

Note that you use the name of the corresponding mineral to set the isotopic composition
of an end member.

The commands

sulfur-34 remove
sulfur-34 off

clear all settings for 34S isotopes from the calculation.
See also the “<isotope>” section above, and the “carbon-13”, “hydrogen-2”, and

“oxygen-18” commands.

C.2.94 suppress

suppress <species, minerals, solid solutions, gases, surface species | ALL>

259



ChemPlugin User’s Guide

Use the “suppress” command (also: “kill”) to prevent certain aqueous species, surface
species, minerals, solid solutions, or gases from being considered in a calculation.
Example:

suppress H3SiO4- Quartz "Maximum Microcline"

prevents the three entries listed from being loaded from the database. Typing “suppress
ALL” suppresses all of the minerals and solid solutions in the thermodynamic database,
as well as any solid solutions defined locally.

The “unsuppress” command reverses the process. To suppress all but a few minerals,
you could type

suppress ALL
unsuppress Quartz Muscovite Kaolinite

C.2.95 surface_capacitance

surface_capacitance = <value | ?>
surface_capacitance C1 = <value | ?> C2 = <value | ?>
surface_capacitance on <type> = <value | ?>

Use this command (abbrev.: “surf_capacitance”) to set, in units of F/m2, the capacitance
or capacitances of a sorbing surface.

For a two-layer complexation model, when you set a capacitance with the command,
or if a value for capacitance is set in the header section of the surface reaction dataset,
ChemPlugin will model surface complexation for the surface in question using the
constant capacitance model, rather than the full two-layer model.

A triple-layer or CD-MUSIC complexation model, on the other hand, requires two
capacitances, C1 and C2. Default capacitances are set in the header of the surface
dataset, but you may use the “C1” and “C2” arguments to override the default settings
from the command line.

If you have set more than one sorbing surface (using the “surface_data” command),
you identify the surface in question by its “type”. For example,

surface_capacitance on HFO = 2

The “type” associated with each surface is listed at the top of each dataset of surface
reactions. The “type” of the hydrous ferric oxide surface represented by the dataset
“FeOH.sdat”, for example, is “HFO”. You can use the “show” command to display the
“type” of each active surface.

260



Configuration Commands

C.2.96 surface_data

surface_data <sorption dataset>
surface_data remove <sorption dataset | surface type>
surface_data OFF

Use the “surface_data” command (abbrev.: “surf_data”) to specify an input dataset
of surface sorption reactions to be considered in the calculation. The dataset name
should be enclosed in quotes if it contains any unusual characters. Use the “remove”
argument to eliminate a surface dataset, specified by name or surface type (e.g.,
“HFO”), from consideration. The argument “OFF” disables consideration of all surface
complexes.

You can specify more than one sorbing surface in a model by repeating the
“surface_data” command for different datasets (a dataset of surface reactions for
sorption onto hydrous ferric oxide, several triple-layer and CD-MUSIC datasets, as
well as example datasets for the ion exchange, Kd , Freundlich, and Langmuir models
are distributed with the software). To remove a dataset of surface reactions from
consideration, you use commands such as

surface_data remove FeOH.sdat
surface_data remove HFO
surface_data OFF

The latter command removes all of the surface datasets that have been loaded.

C.2.97 surface_potential

surface_potential = <value | ?>
surface_potential on <type> = <value | ?>

Use this command (abbrev.: “surf_potential”) to set, in units of mV, the electrical
potential for a two-layer sorbing surface. When you set this value (or if a value is set
in the header section of the surface reaction dataset), ChemPlugin will model surface
complexation for the surface in question using the constant potential method, rather
than invoking the full two-layer model.

If you have set more than one sorbing surface (using the “surface_data” command),
you identify the surface in question by its “type”. For example,

surface_potential on HFO = 0

The “type” associated with each surface is listed at the top of each dataset of surface
reactions. The “type” of the hydrous ferric oxide surface represented by the dataset
“FeOH.sdat”, for example, is “HFO”. You can use the “show” command to display the
“type” of each active surface.

261



ChemPlugin User’s Guide

C.2.98 swap

swap <new basis> <for> <basis species>

Use the “swap” command to change the set of basis entries. All reactions are written
internally in terms of a set of basis species that you can alter to constrain the
composition of the initial system. An aqueous species, mineral, gas, or activity ratio
can be swapped into the basis in place of one of the original basis species listed in
the database. Examples:

swap CO3-- for HCO3-
swap Quartz for SiO2(aq)
swap CO2(g) for H+
swap O2(g) for O2(aq)
swap Ca++/Na+^2 for Ca++

Each end member of a continuous solid solution can similarly be swapped into the
basis. Use the syntax <solid solution>::<end member tag>. For example, the sodium
end member Albite (tag “Ab”) of the plagioclase feldspar solid solution (name “Plag”)
can be swapped into the basis simultaneously with the calcium end member Anorthite
(tag “An”) as follows:

swap Plag::Ab for Na+
swap Plag::An for Al+++

The new species must contain in its composition the original basis species being
swapped out (you can’t swap lead for gold). For example, CO2(g) is composed of
HCO�3 , HC, and water in “thermo.tdat”. The reactions in the thermo dataset (once
reduced to the set of basis and redox species and modified to reflect enabled redox
couples) show the basis entries for which a species may be swapped. For a list of
original basis species, type “show basis”. To reverse a swap, type “unswap<species>”.

C.2.99 TDS
TDS = <value | ?>

Use the “TDS” command to set in mg/kg the total dissolved solids for the initial fluid,
if you don’t want the program to calculate this value automatically. The program uses
the TDS when needed to convert input constraints into molal units.

To restore automatic calculation of the TDS, type the command with no argument
or with an argument of “?”. To see the variable’s current setting, type “show variables”.

262



Configuration Commands

C.2.100 temperature

temperature = <value> <unit>
temperature initial = <value> <unit> final = <value> <unit>
temperature initial = <value> <unit> reactants = <value> <unit>
temperature constant = <on | off>
temperature reset

Use the “temperature” command (also: “T”) to set the temperature of the system or
reactants. The Units Recognized appendix lists possible units, which default to “C”.
Examples:

temperature 25 C
T initial = 25 C, final = 300 C
T initial = 398 K, reactants = 498 K

Temperature values can range over the span of the thermo dataset, from 0°C to 300°C
for “thermo.tdat”; 25°C is the default.

The “constant” keyword lets you hold temperature constant over the course of the
calculation at the initial value, regardless of other settings; “on” enables the feature, as
does omitting an argument; “off” disables it. The “reset” keyword restores temperature
settings to their default states.

C.2.101 theta
theta = <value | ?>

Use the “theta” command to set the time weighting variable used in evaluating kinetic
rate laws. The value may vary from zero (full weighting at the old time level) to one
(full weighting at the new time level). By default, this variable is set to 0.6. To restore
the default value, type the command with no argument or with an argument of “?”. To
see the current setting of this variable, type “show variables”.

C.2.102 timax
timax = <value | ?>

The “timax” command sets in molal units the maximum value of ionic strength used in
calculating species’ activity coefficients when Debye-Hückel methods are employed.
The limiting value is also used when water activity is calculated according to Wolery
(1992b). By default, this variable is set to 3 molal. To restore the default value, type
the command with no argument or with an argument of “?”. To see the current setting
of this variable, type “show variables”.

263



ChemPlugin User’s Guide

C.2.103 time
time <start = <value> <unit>> <end = <value> <unit>>
time = off

Use the “time” command (also: “t”) to set the time span of a kinetic reaction path. The
starting time, by default, is zero, and the default end time is 1 day. Unit choices are
listed in the Units Recognized appendix; “day” is the default. Argument “off” switches
the program out of kinetic mode. Examples:

time end = 100 years
time start 10 days, end 20 days

C.2.104 title
title <character string>

Use the “title” command to set a title to be passed to the plot-format output file.
Example:

title "Yucca Mountain Groundwater"

Be sure to put multiword titles in quotes.

C.2.105 unalter
unalter <species | mineral | solid solution | gas | surface species | ALL>

Use the “unalter” command to reverse the effect of having changed the log K’s for a
species, mineral, gas, or surface reaction, the selectivity coefficient for an exchange
species, the Kd for a sorbed species, the Kf and nf for a Freundlich species, or the
properties of a solid solution in the current dataset. Example:

unalter Quartz

In this case, the log K values for quartz revert to those in the current thermodynamic
dataset. The argument “ALL” resets the log K’s, selectivity coefficients, Kd ’s, or Kf ’s
and nf ’s for all species, minerals, gases, and surface species, as well as the properties
of all solid solutions in the dataset.

C.2.106 unsegregate

unsegregate <mineral(s) | ALL>

Use the “unsegregate” command to remove minerals from the list of minerals to be
segregated isotopically.

264



Configuration Commands

C.2.107 unsuppress

unsuppress <species, minerals, solid solutions, gases, surface species | ALL>

Use the “unsuppress” command (also: “include”) to include in the calculation aqueous
species, surface species, minerals, solid solutions, or gases that have previously been
suppressed. Examples:

unsuppress Quartz Albite "Albite low"
unsuppress ALL

The argument “ALL” clears any species, minerals, solid solutions, or gases that have
been suppressed.

C.2.108 unswap

unswap <species | ALL>

Use the “unswap” command to reverse a basis swap. Example:

unswap Quartz (or unswap SiO2(aq))

to reverse the effect of the previous command

swap Quartz for SiO2(aq)

At this point, SiO2(aq) is back in the basis. The “ALL” argument reverses all basis
swaps.

C.2.109 volume
volume = <value | ?> <unit>

Use the “volume” (also “bulk_volume”) command to cause the program to scale the
initial system to a specific size. By default, the program does not scale the system.
In this case, the bulk volume Vb

Vb D Vf C Vmn C Vin C Vstag (19.1)

is computed as the sum of the fluid volume Vf , mineral volume Vmn, inert volume
Vin, and the volume Vstagof the stagnant zone, if one has been specified using the
“dual_porosity” command.

If Xstag is the stagnant fraction of the system, which is zero if a dual porosity model
has not been invoked, the above equation can be rewritten

�
1 �Xstag

�
Vb D Vf C Vmn C Vin (19.2)

265



ChemPlugin User’s Guide

When you use the “volume” command to set the bulk volume Vb, the program scales
the fluid volume Vf and optionally the mineral and inert volumes, Vmn and Vin, so the
system fills the specified space.

The command

volume = 2 m3

for example, causes the program to scale the fluid volume Vf and optionally the mineral
and inert volumes, Vmn and Vin, so the system occupies 2 m3. Default behavior, in
which no scaling is performed, can be restored at any time with the command

volume = ?

The unit you use to constrain the amount of each mineral in the system controls
whether or not the program adjusts that mineral’s volume. If you constrain Quartz
to “10 cm3”, for example, Quartz will occupy 10 cm3 after scaling. Setting Quartz in
relative units such “volume%” or “mmol/m3”, in contrast, causes the program to fix
the mineral’s volume relative to Vb.

Similarly if you set inert volume in an absolute unit, such as

inert = 50 cm3

the program will honor that constraint and hold Vin steady. The inert portion of the
system in this example will occupy 50 cm3 after scaling. The command

inert = 10 volume%

however, causes the program to scale the inert volume to 10% of the system’s bulk
volume.

C.2.110 Xstable
Xstable = <value>

Use the “Xstable” command to control how the stability criterion for dispersive transport
and thermal conduction is applied. A value of one sets the theoretically largest stable
time step for an ideal situation. ChemPlugin simulations are not necessarily ideal (for
example, the solute may react and the medium may not be uniform), so this limiting
time step may in fact be too large to be stable. Setting “Xstable” to a value smaller
than one results in a more stringent constraint on the time step, and hence greater
stability. The default value for this variable is 1.0, the theoretical limit. See also the
“Courant” command.

266



Appendix: Report Function

Tables in this Appendix list the keywords recognized by the “Report()” member function
and, for each keyword, any arguments recognized, a description of the keyword’s
meaning, the units by which values are returned by default, and the type of value
returned.

267



ChemPlugin User’s Guide

Keyword Arguments Description
activity <aqueous | surf_species

| end_members>
<name(s) | index>...

Species, end member activities

alkalinity Carbonate alkalinity

aqueous <index>... Names of aqueous species

basis <original | current> <index>... Names of basis entries

biomass <reactant(s) | index>... Biomass concentration

boltzman <surf_species | index>... Boltzman factors for surface
species

bulk_volume Bulk volume of nodal block

cat_area <reactant(s) | index>... Areas of catalyzing surfaces

charge <original | current | aqueous
| surf_species><name(s) | index>...

Charge on components
or species

chlorinity Chlorinity

colloids <index>... Names of mobile colloids

concentration original <fluid | system | rock
| sorbed | stagnant | colloid>

current <fluid | system | rock
| sorbed | stagnant | colloid>

elements <fluid | system | rock
| sorbed | stagnant | colloid>

aqueous
surf_species
minerals <equilibrium | kinetic
| both | all>

end_members <equilibrium
| kinetic | both | all>
<name(s) | index>...

Concentration of components,
aqueous or surface species, min-
erals, end members, or elements

configuration <basis | swap | type | unit
| scale | as>
<names(s) | index>...

Basis configuration, including
entry, swap species, constraint
type, unit, scale, and “as” unit

constraints <name(s) | index>... Values constraining each basis
entry

contact_area <reactant(s) | index>... Contact areas for kinetic gases

couples <index>... Names of redox couples

268



Report Function

Default units Return
double

mg/kg sol’n as CaCO3 double

strings

strings

mg/kg double

double

cm3 double

cm2 double

double

molal double

strings

molal double

strings

double

cm2 double

strings

269



ChemPlugin User’s Guide

Keyword Arguments Description
database <elements | basis | redox

| aqueous | electron | minerals
| end_members | solid_solutions
| gas | oxide>

Names of entries in the thermo
dataset, whether included in the
current simulation or not

Deltat Length of current time step

EC Electrical conductivity

Eh <system | couples>
<name(s) | index>...

The system Eh or Nernst Eh
values for redox couples

elements <index>... Names of elements

end_members <index>... End member names

exchange_capacity<surface_type(s) | index>... Capacity of ion exchange surface

freeflowing Volume of free-flowing zone in
nodal block

FA <reactant(s) | index>... Kinetic factor for electon
acceptance by microbes

FD <reactant(s) | index>... Kinetic factor for electon
donation by microbes

fugacity <gas(es) | index>... Gas fugacities

gamma <aqueous | surf_species
| end_members>
<name(s) | index>...

Species, end member activity
coefficients

gas_pressure <gas(es) | index>... Gas partial pressures

gases <index>... Names of gases

hardness Hardness

hardness_carb Carbonate

hardness_ncarb Non-carbonate

imbalance Charge imbalance

imbalance_error Error percentage

inert_volume Inert volume in system

IS or Tionst System ionic strength

isotopes <symbols> Names of or symbols
for isotope systems

270



Report Function

Default units Return
strings

s double

�S/cm or umho/cm double

volts double

strings

strings

eq double

cm3 double

double

double

double

double

bar double

strings

mg/kg sol’n as CaCO3 double

mg/kg sol’n as CaCO3 double

mg/kg sol’n as CaCO3 double

eq/kg double

% error double

cm3 double

molal double

strings

271



ChemPlugin User’s Guide

Keyword Arguments Description
iterations Iterations required for Newton-

Raphson to converge

Kd <name(s) | index>... Net Kd for sorption of original
basis entries onto all surfaces

logfO2 Log fugacity of O2

logQoverK or SI <minerals | solid_solutions
| reactants><name(s) | index>...

Saturation index for minerals,
solid solutions, or reactants

mass original <fluid | system | rock
| sorbed | stagnant | colloid>

current <fluid | system | rock
| sorbed | stagnant | colloid>

elements <fluid | system | rock
| sorbed | stagnant | colloid>

aqueous
surf_species
minerals <equilibrium | kinetic
| both | all>

end_members <equilibrium
| kinetic | both | all>
<name(s) | index>...

Mass of components, aqueous
or surface species, minerals, end
members, or elements

mass_reacted <reactant(s) | index>... Mass of a reactant that has
reacted

mass_remaining <reactant(s) | index>... Mass of a reactant remaining to
react

minerals <equilibrium | kinetic
| both | all> <index>...

Names of minerals

mineral_mass Mass of minerals in system or
block

mineral_volume Volume of minerals in system or
block (excludes inert volume)

mixing_fraction Mixing fraction in flash model

mobility <surface_type(s) | index>... Mobility of colloidal surfaces

mv <mineral(s) | index>... Mineral molar volume

mw <original | current | aqueous
| surf_species | elements
| minerals | end_members
| gases> <name(s) | index>...

Mole weight of components,
species, or elements

272



Report Function

Default units Return
int

liter/kg double

log fugacity double

log Q=K double

moles double

moles double

moles double

strings

kg double

cm3 double

double

double

cm3/mol double

g/mol double

273



ChemPlugin User’s Guide

Keyword Arguments Description
naqueous Number of aqueous species

nbasis Number of basis entries

ncolloids Number of mobile colloids

ncouples Number of redox couples

nelements Number of elements

nend_members Number of end members

ngases Number of gases

nisotopes Number of isotope systems

nminerals <equilibrium | kinetic | both | all> Number of minerals

nreactants <simple | fixed | sliding
| kin_mineral | kin_endmember
| kin_redox | microbial
| kin_aqueous | kin_surface
| kin_gas | all>

Number of reactants, kinetic re-
actions

nsolid_solutions Number of solid solutions

nsorbed Number of original basis
species that sorb

nsorbing_surfaces Number of sorbing surface types

nstagnant One for dual porosity, else zero

nsurf_species Number of surface species

options List of keywords for the report
command

pe <system | couples>
<name(s) | index>...

The system pe or theoretical pe
for redox couples

permeability Sediment permeability

pH System pH

porosity Porosity

pressure Pressure

PV Pore volumes displaced

QoverK <minerals | solid_solutions
| reactants><name(s) | index>...

Q/K for a mineral, soild solution,
or reactant

274



Report Function

Default units Return
int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

strings

double

darcy � �m2 double

double

volume fraction double

bars double

double

double

275



ChemPlugin User’s Guide

Keyword Arguments Description
rate_con <reactant(s) | index>... Rate constants for kinetic reactions

ratecon_unit <reactant(s) | index>... Units of kinetic rate constants

reactant_area <reactant(s) | index>... Surface areas of kinetic
minerals

reactant_type <reactant(s) | index>... simple, fixed, kin_mineral, mi-
crobial, and so on

reactants <simple | fixed | sliding
| kin_mineral
| kin_endmember
| kin_redox | microbial
| kin_aqueous | kin_surface
| kin_gas | all><index>...

Names of reactants and kinetic
reactions

rxn_rate <reactant(s) | index>... Reaction rates

SIS or Sionst Stoichiometric ionic strength

solid_solutions <index>... Names of solid solutions

soln_compressibility Solution compressibility

soln_density Solution density

soln_expansivity Solution thermal expansivity

soln_mass Solution mass

soln_viscosity Viscosity of fluid

soln_volume Volume of fluid

sorb_area <surface_type(s) | index>... Areas of sorbing surfaces

sorbed <index>... Names of original basis
species that sorb

sorption_capacity <surface_type(s) | index>... Capacity of a Langmuir surface

stagnant Volume of stagnant zone in nodal block

success Returns a value of one if ChemPlugin
has successfully completed a time step,
zero if not

surf_charge or
surf_charge0

<surface_type(s) | index>... Electrical charge at 0-plane
of a sorbing surface

surf_chargeb <surface_type(s) | index>... Electrical charge at ˇ-plane

surf_charged <surface_type(s) | index>... Electrical charge at d -plane

276



Report Function

Default units Return
(varies) double

strings

cm2 double

strings

strings

mol/s double

molal double

strings

bar�1 double

g/cm3 double

°C�1 double

kg double

cp double

cm3 double

cm2 double

strings

mol double

cm3 double

int

�C/cm2 double

�C/cm2 double

�C/cm2 double

277



ChemPlugin User’s Guide

Keyword Arguments Description
surf_potential or
surf_potential0

<surface_type(s) | index>... Electrical potential at 0-plane
of a sorbing surface

surf_potentialb <surface_type(s) | index>... Electrical potential at ˇ-plane

surf_potentiald <surface_type(s) | index>... Electrical potential at d -plane

surf_species <index>... Names of surface species

surf_type Types of reacting surfaces

surfaces Names of reacting surfaces

TDS Total dissolved solids

temperature or T Temperature

Tend Final time of simulation

Time Current point in time

total_biomass Biomass in system or block

total_reacted Massreactedintosystemorblock

TPF <reactant(s) | index>... Thermodynamic potential factor

Tstart Beginning time of simulation

Watact Activity of water

watertype Ion type of water

Wmass Water mass

Xfree Free-flowing fraction

Xi Reaction progress

xsorbed <name(s) | index>... Sorbed fraction of an original
basis entry

xss <equilibrium | kinetic | both | all>
<name(s) | index>...

End member mole fractions

<isotope
| Hydrogen-2
| Carbon-13
| Oxygen-18
| Sulfur-34
| symbol
| 2-H | 13-C
| 18-O | 34-S>

<fluid | rock | sorbate | system>
<solvent | aqueous
| minerals | end_members | gases
| surf_species | reactants>
<name(s) | index>...

Isotopic compositions of
various aspects of system

278



Report Function

Default units Return
mV double

mV double

mV double

strings

strings

strings

mg/kg double

°C double

s double

s double

mg/kg double

g double

double

s double

double

string

kg double

double

double

double

double

ı (�) double

279



280



Appendix: Units Recognized

The following is a complete table of the unit names recognized by ChemPlugin. The
qualifier “free” specifies that the constraint applies to the free rather than to the bulk
entry. Use the “log” qualifier to set the variable on a logarithmic scale. Examples:

Cl- 4.1 mg/kg
Cl- 4.1 free mg/kg
Cl- 0.612784 log free mg/kg

Dimension Units

Mass and mol mmol umol nmol
Concentration molal mmolal umolal nmolal

mol/kg mmol/kg umol/kg nmol/kg
mol/l mmol/l umol/l nmol/l
kg g mg ug
ng
g/kg mg/kg ug/kg ng/kg
wt fraction wt%
g/l mg/l ug/l ng/l
eq meq ueq neq
eq/kg meq/kg ueq/kg neq/kg
eq/l meq/l ueq/l neq/l
cm3 m3 km3 l
mol/cm3 mmol/cm3 umol/cm3 nmol/cm3
kg/cm3 g/cm3 mg/cm3 ug/cm3
ng/cm3
mol/m3 mmol/m3 umol/m3 nmol/m3
kg/m3 g/m3 mg/m3 ug/m3
ng/m3
vol. fract. volume%

281



ChemPlugin User’s Guide

Dimension Units

Activity activity ratio

Fugacity fugacity

Electrical V mV pe
Potential (Eh)

pH pH

Percentage %

Time s min hr day
mon yr m.y.

Reaction Rate mol/s mmol/s umol/s nmol/s
kg/s g/s mg/s ug/s
ng/s
cm3/s m3/s l/s gal/s
ft3/s
mol/min mmol/min umol/min nmol/min
kg/min g/min mg/min ug/min
ng/min
cm3/min m3/min l/min gal/min
ft3/min
mol/hr mmol/hr umol/hr nmol/hr
kg/hr g/hr mg/hr ug/hr
ng/hr
cm3/hr m3/hr l/hr gal/hr
ft3/hr
mol/day mmol/day umol/day nmol/day
kg/day g/day mg/day ug/day
ng/day
cm3/day m3/day l/day gal/day
ft3/day
mol/yr mmol/yr umol/yr nmol/yr
kg/yr g/yr mg/yr ug/yr
ng/yr
cm3/yr m3/yr l/yr gal/yr
ft3/yr

282



Units Recognized

Dimension Units

Reaction Rate mol/m.y. mmol/m.y. umol/m.y. nmol/m.y.
kg/m.y. g/m.y. mg/m.y. ug/m.y.
ng/m.y.
cm3/m.y. m3/m.y. l/m.y. gal/m.y.
ft3/m.y.
mol/cm3/s mmol/cm3/s umol/cm3/s nmol/cm3/s
kg/cm3/s g/cm3/s mg/cm3/s ug/cm3/s
ng/cm3/s
cm3/cm3/s volume%/s
mol/cm3/min mmol/cm3/min umol/cm3/min nmol/cm3/min
kg/cm3/min g/cm3/min mg/cm3/min ug/cm3/min
ng/cm3/min
cm3/cm3/min volume%/min
mol/cm3/hr mmol/cm3/hr umol/cm3/hr nmol/cm3/hr
kg/cm3/hr g/cm3/hr mg/cm3/hr ug/cm3/hr
ng/cm3/hr
cm3/cm3/hr volume%/hr
mol/cm3/day mmol/cm3/day umol/cm3/day nmol/cm3/day
kg/cm3/day g/cm3/day mg/cm3/day ug/cm3/day
ng/cm3/day
cm3/cm3/day volume%/day
mol/cm3/yr mmol/cm3/yr umol/cm3/yr nmol/cm3/yr
kg/cm3/yr g/cm3/yr mg/cm3/yr ug/cm3/yr
ng/cm3/yr
cm3/cm3/yr volume%/yr
mol/cm3/m.y. mmol/cm3/m.y. umol/cm3/m.y. nmol/cm3/m.y.
kg/cm3/m.y. g/cm3/m.y. mg/cm3/m.y. ug/cm3/m.y.
ng/cm3/m.y.
cm3/cm3/m.y. volume%/m.y.
mol/m3/s mmol/m3/s umol/m3/s nmol/m3/s
kg/m3/s g/m3/s mg/m3/s ug/m3/s
ng/m3/s
m3/m3/s
mol/m3/min mmol/m3/min umol/m3/min nmol/m3/min
kg/m3/min g/m3/min mg/m3/min ug/m3/min
ng/m3/min
m3/m3/min

283



ChemPlugin User’s Guide

Dimension Units

Reaction Rate mol/m3/hr mmol/m3/hr umol/m3/hr nmol/m3/hr
kg/m3/hr g/m3/hr mg/m3/hr ug/m3/hr
ng/m3/hr
m3/m3/hr
mol/m3/day mmol/m3/day umol/m3/day nmol/m3/day
kg/m3/day g/m3/day mg/m3/day ug/m3/day
ng/m3/day
m3/m3/day
mol/m3/yr mmol/m3/yr umol/m3/yr nmol/m3/yr
kg/m3/yr g/m3/yr mg/m3/yr ug/m3/yr
ng/m3/yr
m3/m3/yr
mol/m3/m.y. mmol/m3/m.y. umol/m3/m.y. nmol/m3/m.y.
kg/m3/m.y. g/m3/m.y. mg/m3/m.y. ug/m3/m.y.
ng/m3/m.y.
m3/m3/m.y.
molal/s mmolal/s umolal/s nmolal/s
mol/kg/s mmol/kg/s umol/kg/s nmol/kg/s
g/kg/s mg/kg/s ug/kg/s ng/kg/s
cm3/kg/s
molal/min mmolal/min umolal/min nmolal/min
mol/kg/min mmol/kg/min umol/kg/min nmol/kg/min
g/kg/min mg/kg/min ug/kg/min ng/kg/min
cm3/kg/min
molal/hr mmolal/hr umolal/hr nmolal/hr
mol/kg/hr mmol/kg/hr umol/kg/hr nmol/kg/hr
g/kg/hr mg/kg/hr ug/kg/hr ng/kg/hr
cm3/kg/hr
molal/day mmolal/day umolal/day nmolal/day
mol/kg/day mmol/kg/day umol/kg/day nmol/kg/day
g/kg/day mg/kg/day ug/kg/day ng/kg/day
cm3/kg/day
molal/yr mmolal/yr umolal/yr nmolal/yr
mol/kg/yr mmol/kg/yr umol/kg/yr nmol/kg/yr
g/kg/yr mg/kg/yr ug/kg/yr ng/kg/yr
cm3/kg/yr
molal/m.y. mmolal/m.y. umolal/m.y. nmolal/m.y.
mol/kg/m.y. mmol/kg/m.y. umol/kg/m.y. nmol/kg/m.y.
g/kg/m.y. mg/kg/m.y. ug/kg/m.y. ng/kg/m.y.
cm3/kg/m.y.

Flow Rate cm3/s m3/s l/s gal/s
ft3/s
cm3/min m3/min l/min gal/min
ft3/min

284



Units Recognized

Dimension Units

Flow Rate cm3/hr m3/hr l/hr gal/hr
ft3/hr
cm3/day m3/day l/day gal/day
ft3/day
cm3/yr m3/yr l/yr gal/yr
ft3/yr
cm3/m.y. m3/m.y. l/m.y. gal/m.y.
ft3/m.y.

Density kg/cm3 g/cm3 mg/cm3 ug/cm3
ng/cm3
kg/m3 g/m3 mg/m3 ug/m3
ng/m3

Titration eq_acid meq_acid ueq_acid neq_acid
Alkalinity eq_acid/kg meq_acid/kg ueq_acid/kg neq_acid/kg

eq_acid/l meq_acid/l ueq_acid/l neq_acid/l
g/kg_as_CaCO3 mg/kg_as_CaCO3 ug/kg_as_CaCO3 ng/kg_as_CaCO3
wt%_as_CaCO3
g/l_as_CaCO3 mg/l_as_CaCO3 ug/l_as_CaCO3 ng/l_as_CaCO3
mol/kg_as_CaCO3 mmol/kg_as_Ca... umol/kg_as_Ca... nmol/kg_as_CaCO3
mol/l_as_CaCO3 mmol/l_as_CaCO3 umol/l_as_CaCO3 nmol/l_as_CaCO3

285



ChemPlugin User’s Guide

Dimension Units

Sorption Capacity mol/grock mmol/grock umol/grock nmol/grock

Exchange Capacity eq/grock meq/grock ueq/grock neq/grock

Surface Charge uC/cm2

Pore Volumes pore_volumes

Dynamic Viscosity cp poise

Compressibility /Pa /MPa /atm /bar
/psi

Thermal expansivity /C /F /K /R

Pressure Pa MPa atm bar
psi

Permeability m2 cm2 um2
darcy mdarcy udarcy

Distribution l/kg ml/g ml/mg
Coefficients (KDs)

Activity Coefficients act. coef.

Electrical uS/cm umho/cm
Conductivity

Heat Capacity J/g/C J/kg/K cal/g/C

Internal Heat Source J/cm3/s J/cm3/yr J/m3/s J/m3/yr
cal/cm3/s cal/cm3/yr cal/m3/s cal/m3/yr
W/cm3 W/m3

Thermal W/C W/K J/s/C J/s/K
Transmissivity cal/s/C cal/s/K

Saturation Q/K

Temperature C F K R

Number number

286



Index

activity, 219, 268, 282
add, 219
adjust_mass, 219
adjust_rate, 220
AdvanceChemical(), 168, 188, 208
AdvanceHeatTransport(), 167, 187, 208
AdvanceTimeStep(), 167, 187, 207
AdvanceTransport(), 167, 187, 208
advantages, 2
advection-dispersion model, 77, 78
advective heat transfer code, 99
advective heat transfer, model of, 94
advective transfer, 89
alkalinity, 220, 268, 285
alter, 221
ancillary functions, MPI versions, 135
aqueous, 268
assembled C++ code, 21
assigning rank, under MPI, 129

b-dot, 222
balance, 222
basis, 268
bifurcating tree, 52
biomass, 268
boltzman, 268
bulk_volume, 268

C++ member functions, 160
C++ source code, 39, 54, 61, 73, 82, 96,

109, 121, 142, 148
carbon-13, 222
cat_area, 268
charge, 268
chdir, 223
ChemPlugin setup, 155
chlorinity, 268

ClearLinks(), 164, 183, 204
client program, 17
client startup, under MPI, 137
cluster computing, 127
code changes, 115
code changes, under MPI, 135
colloids, 268
comparison to React, 215
compressibility, 286
concentration, 268, 281
conductive transfer, 89
conductivity, 223
Config(), 161, 178, 201
configuration, 117, 268
configuration command reference, 217
configuration commands, 215
configuration commands, additional, 216
configuration commands, omitted, 216
configuration step, 18
configuration, default values, 215
configure and initialize instances, 80
configure instances, 106
configuring an instance, 10
configuring and initializing instances, 70, 92,

94, 161, 178, 201
console messages, 8, 12
Console(), 170, 192, 211
constraints, 268
contact_area, 268
controlling instances, 9
convenience functions, 172, 194, 213
ConvertUnit(), 172, 195, 213
couple, 223
couples, 268
Courant, 224
cpr, 224

287



Index

cpu_max, 224
cpw, 225
create instances, 105
creating and destroy instances, 7

data, 225
database, 270
debye-huckel, 222
decouple, 225
deleting instances, 7
delQ, 225
Deltat, 270
delxi, 226
density, 226, 285
diffusion and dispersion, 63
diffusion, model of, 67
direct output, 31
distribution coefficients, 286
dual_porosity, 227
dump, 228
dx_init, 229
dxplot, 229
dxprint, 229

EC, 270
Eh, 230, 270
electrical conductivity, 286
electrical potential, 282
elements, 270
end-dump, 230
end_members, 270
environmental variables, 9
epsilon, 230
example program, 13
example programs, 49
exchange capacity, 286
exchange_capacity, 230
exchange_capacity, 270
explain, 231
explain_step, 231
extending a titration, 37
extending runs, 37
ExtendRun(), 168, 189, 209
extrapolate, 231

FA, 270
FD, 270
fix, 232
flash, 232

flow and transport, 55
flow rate, 55, 284, 285
flow rate, retrieving, 56
flow rate, setting, 55
flow, transient, 56
flow,steady, 56
flow-through, 232
flow-through reactor, 57
FlowRate(), 165, 184, 206
flush, 232
FORTRAN member functions, 177
free outlets, 48
freeflowing, 270
fugacity, 233, 270, 282

gamma, 270
gas_pressure, 270
gases, 270
generalization, 22
grid, 50

h-m-w, 233
hardness, 270
hardness_carb, 270
hardness_ncarb, 270
header files, 115
header files, under MPI, 135
heat capacity, 286
heat conduction code, 96
heat source, 286
heat sources, 90
heat transfer, 87
heat_source, 233
HeatTrans(), 166, 186, 207
how it works, 1
hybrid parallelization, 147
hydrogen-2, 234

imbalance, 270
imbalance_error, 270
inert, 235
inert_volume, 270
initialization, 118
initialization step, 19
initialize instances, 107
Initialize(), 161, 179, 202
initializing an instance, 10
initializing MPI, 128
inlet fluid, 58

288



Index

input loop, 42
install ChemPlugin, 155
instantiation, 116
instantiation, Fortran, 177
instantiation, under MPI, 128, 138
introduction, 1
IS, 270
isotope, 218
isotope_data, 235
isotopes, 270, 278
iterations, 272
itmax, 236

Kd, 236, 272
kinetic, 236

languages supported, 4
launch development environment, 156
linear chain, 49
link the instances, 81, 108
Link(), 162, 180, 202
linking, 118
linking instances, 10, 47, 71, 93, 95, 162,

179, 202
linking, under MPI, 139
links and flow rates, 59
log, 240
logfO2, 272
logQoverK, 272
loop scheduling, hybrid parallelism, 147
loop scheduling, multithreaded code, 119
loop scheduling, using OpenMP, 119

main program, 42
mass, 272
mass_reacted, 272
mass_remaining, 272
member functions, 159
member functions, C++, 160
member functions, calling under MPI, 130
member functions, cluster computing, 173,

196
member functions, Fortran, 177
member functions, Python, 201
mineral_mass, 272
mineral_volume, 272
minerals, 272
mixing_fraction, 272
mobility, 240, 272

model of heat conduction, 91
MPI protocol, 127
MPI version of ChemPlugin, 128
MpiAssign(), 173, 196
MpiOnRank(), 174, 196
MpiRank(), 174, 197
MpiReport(), 174, 197
MpiReport1(), 175, 198
MpiReport1c(), 175, 198
MpiReport1i(), 175, 198
MpiUpdateLink(), 175, 199
mReact C++ code, 45
multithreading, 115
mv, 272
mw, 272

naqueous, 274
nbasis, 274
ncolloids, 274
ncouples, 274
nelements, 274
nend_members, 274
ngases, 274
nisotopes, 274
nLinks(), 164, 183, 205
nminerals, 274
no-precip, 241
nOutlets(), 165, 184, 205
nreactants, 274
nsolid_solutions, 274
nsorbed, 274
nsorbing_surfaces, 274
nstagnant, 274
nsurf_species, 274
nswap, 242
NULL target, 26
number of instances, 116

option flags, 9
options, 274
Outlet(), 163, 181, 203
output file, 69
output function, 68, 104
output streams, 13, 170, 191, 210
output, on-demand, 32
output, plot, 32, 34
output, print, 32, 33
output, scheduling, 31
output, self-scheduled, 32

289



Index

overview, 7
oxygen-18, 242

parallel computing, 115, 147
parallel implementation, 127
pause, 242
pe, 242, 274
permeability, 243, 274, 286
pH, 244, 274, 282
phrqpitz, 244
pickup, 244
pitz_dgamma, 245
pitz_precon, 245
pitz_relax, 245
plot, 246
PlotBlock(), 172, 194, 212
PlotHeader(), 171, 193, 212
PlotTrailer(), 172, 194, 212
pluses, 246
pore volumes, 286
porosity, 246, 274
precip, 247
preliminaries, 155
press_model, 247
pressure, 247, 274, 286
print, 248
print-format output, contents of, 36
PrintOutput(), 171, 192, 211
program output, 60
program structure, 17, 41, 58, 67, 78, 103
PV, 274
pwd, 248
Python member functions, 201

Q/K, 286
QoverK, 274

rate_con, 276
ratecon_unit, 276
ratio, 248
react, 249
React emulator, 41
reactant_area, 276
reactant_type, 276
reactants, 250, 276
reaction rate, 282–284
reactive transport model, 103
read, 250
remove, 251

removing links, 48
report, 251
Report function, 267
Report(), 169, 189, 209
Report() family of member functions, 23
Report() member function, 23
Report1(), 169, 191, 210
Report1() member function, 23
Report1c(), 169, 191, 210
Report1c() member function, 23
Report1i(), 169, 191, 210
Report1i() member function, 23
ReportTimeStep(), 167, 186, 207
reset, 251
resize, 251
Results(), 26
retrieving results, 12, 23, 169, 189, 209
Retrieving results, under MPI, 132
running the client, 72, 94, 96
running the example program, 20, 44
running the model, 81, 109
running, under MPI, 141, 148
rxn_rate, 276

save, 252
scalar values, 24
script, 252
segregate, 253
set transport parameters, 107
setup, ChemPlugin, 155
show, 253
SI, 272
simax, 254
simulation parameters, 69, 79, 92, 94, 105
Sionst, 276
SIS, 276
slide, 254
SlideFugacity(), 168, 188, 208
SlideTemperature(), 168, 188, 209
solid_solution, 255
solid_solutions, 276
soln_compressibility, 276
soln_density, 276
soln_expansivity, 276
soln_mass, 276
soln_viscosity, 276
soln_volume, 276
sorb_area, 276
sorbate, 256

290



Index

sorbed, 276
sorption capacity, 286
sorption_capacity, 276
source code, 29, 36
span, 256
speedup, 121
stability, 56, 90
stability, numerical, 66, 77
stagnant, 276
start_date, 258
start_time, 258
step_increase, 258
step_max, 259
stirred reactor, 59
success, 276
suffix, 259
sulfur-34, 259
suppress, 259
surf_charge, 276
surf_charge0, 276
surf_chargeb, 276
surf_charged, 276
surf_potential, 278
surf_potential0, 278
surf_potentialb, 278
surf_potentiald, 278
surf_species, 278
surf_type, 278
surface charge, 286
surface_capacitance, 260
surface_data, 261
surface_potential, 261
surfaces, 278
swap, 262

T, 278
TDS, 262, 278
temperature, 263, 278, 286
temperature calculation, 88
temperature, externally prescribed, 91
temperature, initial, 87
Tend, 278
thermal expansivity, 286
thermal transmissivity, 286
theta, 263
timax, 263
Time, 278
time, 264, 282
time marching, 11

time marching loop, 19, 43, 59, 71, 90, 93,
95, 108, 120, 166, 186, 207

time marching loop, under MPI, 140
Tionst, 270
title, 264
titration simulator, 17
total_biomass, 278
total_reacted, 278
TPF, 278
transferring data, under MPI, 131
transmissivity, 63
Transmissivity(), 166, 185, 206
transmissivity, determining, 64
transmissivity, retrieving, 65
transmissivity, setting, 65
transport across links, 165, 184, 205
Tstart, 278

unalter, 264
unit, 217
unit conversion, 281
units recognized, 281
Unlink(), 163, 182, 204
unsegregate, 264
unsuppress, 265
unswap, 265
using this Guide, 15

vector quantities, 25
Version(), 172, 194, 213
viscosity, 286
volume, 265

Watact, 278
watertype, 278
Wmass, 278
work sharing loops, under MPI, 138

Xfree, 278
Xi, 278
xsorbed, 278
xss, 278
Xstable, 266

291


	Introduction
	How it works
	Advantages
	Languages supported

	Overview
	Creating and destroying instances
	Deleting instances
	Console messages
	Option flags
	Environmental variables

	Controlling instances
	Configuring and initializing an instance
	Linking instances
	Time marching
	Console messages
	Retrieving results
	Output streams

	Example program
	Using this Guide

	Titration Simulator
	Program structure
	Client program
	Configuration step
	Initialization step
	Time marching loop

	Running the example program
	Assembled C++ code
	Generalization

	Retrieving Results
	Report() family of member functions
	Scalar values
	Vector quantities
	NULL target

	An example
	Source code

	Direct Output
	Scheduling output
	Self-scheduled output
	Print output
	Plot output

	On-demand output
	Print output
	Plot output

	Contents of print-format output
	Source code

	Extending Runs
	Extending a titration
	C++ source code

	React Emulator
	Program structure
	Main program
	Input loop
	Time marching loop

	Running the example program
	mReact C++ code

	Linking Instances
	Linking instances
	Free outlets
	Removing links
	Example programs
	Linear chain
	Grid
	Bifurcating tree
	C++ source code


	Flow and Transport
	Flow rate
	Setting the flow rate
	Retrieving the flow rate
	Steady and transient flow

	Stability
	Flow-through reactor
	Program structure
	Inlet fluid
	Stirred reactor
	Links and flow rates
	Time marching loop
	Program output
	C++ source code


	Diffusion and Dispersion
	Transmissivity
	Determining transmissivity
	Setting transmissivity
	Retrieving the transmissivity

	Numerical stability
	Model of diffusion
	Program structure
	Output function
	Simulation parameters
	Output file
	Configuring and initializing instances
	Linking instances
	Time marching loop
	Running the client
	C++ source code


	Advection-Dispersion Model
	Numerical stability
	Advection-dispersion model
	Program structure
	Simulation parameters
	Configure and initialize instances
	Link the instances

	Running the model
	C++ source code

	Heat Transfer
	Initial temperature
	Temperature calculation
	Advective transfer
	Conductive transfer
	Heat sources
	Stability
	Time marching loop

	Externally prescribed temperature
	Model of heat conduction
	Simulation parameters
	Configuring and initializing instances
	Linking instances
	Time marching loop
	Running the client

	Model of advective heat transfer
	Simulation parameters
	Configuring and initializing instances
	Linking instances
	Time marching loop
	Running the client

	C++ source code
	Heat conduction code
	Advective heat transfer code


	Reactive Transport Model
	Program structure
	Output function
	Simulation parameters
	Create instances
	Configure instances
	Initialize instances
	Set transport parameters
	Link the instances
	Time marching loop
	Running the model
	C++ source code

	Multithreading
	Code changes
	Header files
	Number of instances
	Instantiation
	Configuration
	Initialization
	Linking
	Loop scheduling
	Time marching loop

	Speedup
	C++ source code

	Cluster Computing
	MPI protocol
	ChemPlugin under MPI
	Initializing MPI
	Instantiation
	Assigning rank
	Calling member functions
	Transferring data
	Retrieving results

	Code changes
	Header files
	Ancillary functions
	Client startup
	Instantiation
	Work sharing loops
	Setting velocity
	Linking
	Time marching loop

	Running the example
	C++ source code

	Hybrid Parallelization
	Loop scheduling
	Running the example
	C++ source code

	Appendix: ChemPlugin Setup
	Preliminaries
	Install ChemPlugin
	Launch development environment

	Running a Client Program
	C++
	FORTRAN
	Python


	Appendix: Member Functions
	C++
	Configuring and initializing instances
	Linking instances
	Transport across links
	Time marching loop
	Retrieving results
	Output streams
	Convenience
	Cluster computing

	FORTRAN
	Instantiation
	Configuring and initializing instances
	Linking instances
	Transport across links
	Time marching loop
	Retrieving results
	Output streams
	Convenience
	Cluster computing

	Python
	Configuring and initializing instances
	Linking instances
	Transport across links
	Time marching loop
	Retrieving results
	Output streams
	Convenience


	Appendix: Configuration Commands
	Comparison to React
	Default values
	Omitted commands
	Additional commands

	Command reference
	<unit>
	<isotope>
	activity
	add
	adjust_mass
	adjust_rate
	alkalinity
	alter
	b-dot
	balance
	carbon-13
	chdir
	conductivity
	couple
	Courant
	cpr
	cpu_max
	cpw
	data
	decouple
	delQ
	delxi
	density
	dual_porosity
	dump
	dx_init
	dxplot
	dxprint
	Eh
	end-dump
	epsilon
	exchange_capacity
	explain
	explain_step
	extrapolate
	fix
	flash
	flow-through
	flush
	fugacity
	h-m-w
	heat_source
	hydrogen-2
	inert
	isotope_data
	itmax
	Kd
	kinetic
	log
	mobility
	no-precip
	nswap
	oxygen-18
	pause
	pe
	permeability
	pH
	phrqpitz
	pickup
	pitz_dgamma
	pitz_precon
	pitz_relax
	plot
	pluses
	porosity
	precip
	press_model
	pressure
	print
	pwd
	ratio
	react
	reactants
	read
	remove
	report
	reset
	resize
	save
	script
	segregate
	show
	simax
	slide
	solid_solution
	sorbate
	span
	start_date
	start_time
	step_increase
	step_max
	suffix
	sulfur-34
	suppress
	surface_capacitance
	surface_data
	surface_potential
	swap
	TDS
	temperature
	theta
	timax
	time
	title
	unalter
	unsegregate
	unsuppress
	unswap
	volume
	Xstable


	Appendix: Report Function
	Appendix: Units Recognized
	Index

