dataset of thermodynamic data for gwb programs dataset format: jul22 activity model: h-m-w fugacity model: peng-robinson * * +++++++++++++++++++++++++++++++++++++++++++++++ * +++++++++++++++++++++++++++++++++++++++++++++++ * * This database is based on the low-temperature Pitzer model in the * Na-K-Ca-Mg-H-Cl-SO4-CO3-HCO3-OH-H2O system, valid from 25 deg C * to -60 deg C. The model was developed by Spencer et al (1990), * Marion and Farren (1999), and Marion (2001). * * The original implementation of this model was in the FREZCHEM code * as described by Marion and Grant (1994) and Marion and Kargel (2008). * * FREZCHEM was later adapted to the PhreeqC dataset frezchem.dat by * Toner and Sletten (2013). The PhreeqC dataset was converted to GWB * format using TEdit in GWB Release 15. * * * Notes: * * The temperature dependence of log Ks and header variable Debye-Huckel A * is described with a polynomial containing up to six coefficients a-f * spread over two lines: * * log K = a + b*(Tk-Tr) + c*(Tk2-Tr2) + d*(1/Tk - 1/Tr) + e*(1/Tk2 - 1/Tr2) * + f*ln(Tk/Tr) * * where Tk is absolute temperature and Tr is 298.15 K. Hence, if c-f are * zero (or omitted), then b is the first temperature derivative. * * GWB Log K polynomial coefficients a-f were converted from coefficients * A1-A6 in PhreeqC's analytic expression as follows: * * a= log10 K(298.15 K) = A1 + A2*Tr + A3/Tr + A4*log10(Tr) + A5/Tr2 + A6*Tr2 * b= A2 * c= A6 * d= A3 * e= A5 * f= A4/ln(10) * * A temperature range of validity may optionally be set for each reaction. * If no range is set, the span of the principal temperatures is assumed. * * The GWB's H-M-W model uses the header variable Debye-Huckel A (adh) to * determine the value of A-phi as 2.303 A/3 only when its temperature * expansion is defined in polynomial form, as in this dataset. Otherwise, * when A is set as a T-table, the apps calculate A-phi internally using a * method valid above the freezing point of water. Debye-Huckel B (bdh) is * not used. * * The polynomial coefficients for Debye-Huckel A are converted from an * expression for A-phi in the PhreeqC dataset ColdChem.dat, from * Toner and Catling (2017). * * Species' names have been converted to the GWB format. For example, Ca++ * replaces Ca+2. * * Suffixes (e.g. (aq) and (s)) have been added where species names were * duplicated. * * Oxide components have been added. * * Factors have been added for evaluating gas fugacity coefficients. * * To the best of our knowledge, this dataset is not subject to copyright. * * +++++++++++++++++++++++++++++++++++++++++++++++ * +++++++++++++++++++++++++++++++++++++++++++++++ * temperatures -60.0000 -50.0000 -40.0000 -30.0000 -20.0000 -10.0000 0.0000 25.0000 * pressures 1.0134 1.0134 1.0134 1.0134 1.0134 1.0134 1.0134 1.0134 * debye huckel a (adh) a= 0.5100462969 b= 0.0018577945 c= -1.8648e-06 d= 744.6507863 e= -31115.48851 f= 1.8363165 * debye huckel b (bdh) a= 0 b= 0 c= 0 d= 0 e= 0 f= 0 9 elements Hydrogen (H ) mole wt.= 1.0080 g Oxygen (O ) mole wt.= 15.9990 g Calcium (Ca) mole wt.= 40.0800 g Magnesium (Mg) mole wt.= 24.3100 g Sodium (Na) mole wt.= 22.9900 g Potassium (K ) mole wt.= 39.1000 g Chlorine (Cl) mole wt.= 35.4500 g Carbon (C ) mole wt.= 12.0150 g Sulfur (S ) mole wt.= 32.0640 g -end- 9 basis species H2O charge= 0 ion size= 0.0 A mole wt.= 18.0150 g 2 elements in species 2.000 H 1.000 O H+ charge= 1 ion size= 0.0 A mole wt.= 1.0080 g 1 elements in species 1.000 H Ca++ charge= 2 ion size= 0.0 A mole wt.= 40.0800 g 1 elements in species 1.000 Ca Mg++ charge= 2 ion size= 0.0 A mole wt.= 24.3100 g 1 elements in species 1.000 Mg Na+ charge= 1 ion size= 0.0 A mole wt.= 22.9900 g 1 elements in species 1.000 Na K+ charge= 1 ion size= 0.0 A mole wt.= 39.1000 g 1 elements in species 1.000 K Cl- charge= -1 ion size= 0.0 A mole wt.= 35.4500 g 1 elements in species 1.000 Cl CO3-- charge= -2 ion size= 0.0 A mole wt.= 60.0120 g 2 elements in species 1.000 C 3.000 O SO4-- charge= -2 ion size= 0.0 A mole wt.= 96.0600 g 2 elements in species 4.000 O 1.000 S -end- 0 redox couples -end- 6 aqueous species OH- charge= -1 ion size= 0.0 A mole wt.= 17.0070 g 2 species in reaction -1.000 H+ 1.000 H2O * log10 K(298 K) = 13.9949 a= 13.99485624 b= 1.15387159 c= -0.000634273 d= -41390.2015 e= 949444.6 f= -358.4558905 HCO3- charge= -1 ion size= 0.0 A mole wt.= 61.0200 g 2 species in reaction 1.000 CO3-- 1.000 H+ * log10 K(298 K) = -10.3288 a= -10.3288483 b= -0.03252849 c= 0 d= 5151.7879 e= -563713.8 f= 16.90517763 CO2 charge= 0 ion size= 0.0 A mole wt.= 44.0130 g 3 species in reaction -1.000 H2O 1.000 CO3-- 2.000 H+ * log10 K(298 K) = -16.6807 a= -16.68071237 b= -0.09344813 c= 0 d= 26986.1558 e= -2248628.7 f= 71.98844052 CaCO3 charge= 0 ion size= 0.0 A mole wt.= 100.0920 g 2 species in reaction 1.000 Ca++ 1.000 CO3-- * log10 K(298 K) = 3.1515 a= 3.151458075 b= -0.29943997 c= 0 d= 35512.7505 e= 0 f= 210.9880766 MgOH+ charge= 1 ion size= 0.0 A mole wt.= 41.3170 g 3 species in reaction -1.000 H+ 1.000 Mg++ 1.000 H2O * log10 K(298 K) = 11.8092 a= 11.80917069 b= 0 c= 0 d= 3369.8212 e= 0 f= 0 MgCO3 charge= 0 ion size= 0.0 A mole wt.= 84.3220 g 2 species in reaction 1.000 Mg++ 1.000 CO3-- * log10 K(298 K) = -2.9280 a= -2.928010819 b= 0 c= 0 d= -1093.4862 e= 0 f= -5.526106305 -end- 0 free electron -end- 36 minerals Anhydrite type= sulfate formula= CaSO4 mole vol.= 45.9400 cc mole wt.= 136.1400 g 2 species in reaction 1.000 Ca++ 1.000 SO4-- * log10 K(298 K) = -4.2603 a= -4.260310492 b= -1.38413871 c= 0.000823464 d= 45210.0023 e= -1037066.3 f= 391.5369759 Antarcticite type= halide formula= CaCl2:6H2O mole vol.= 128.1200 cc mole wt.= 219.0700 g 3 species in reaction 1.000 Ca++ 2.000 Cl- 6.000 H2O * log10 K(298 K) = 3.7882 a= 3.788231274 b= -14.14140164 c= 0.005422163 d= 1381731.005 e= -52024247.5 f= 6722.649516 Aphthitalite type= sulfate formula= Na2SO4:3K2SO4 mole vol.= 246.2400 cc mole wt.= 664.8200 g 3 species in reaction 2.000 Na+ 6.000 K+ 4.000 SO4-- * log10 K(298 K) = -7.1885 a= -7.188533413 b= 0.06631698 c= 0 d= 0 e= 0 f= 0 Aragonite type= carbonate formula= CaCO3 mole vol.= 34.1500 cc mole wt.= 100.0920 g 2 species in reaction 1.000 CO3-- 1.000 Ca++ * log10 K(298 K) = -8.3361 a= -8.336136975 b= -0.07799321 c= 0 d= 2903.2929 e= 0 f= 31.09331343 Arcanite type= sulfate formula= K2SO4 mole vol.= 65.5000 cc mole wt.= 174.2600 g 2 species in reaction 1.000 SO4-- 2.000 K+ * log10 K(298 K) = -1.7761 a= -1.776106627 b= 0 c= 0 d= -1371.198 e= 0 f= 0 Bischofite type= halide formula= MgCl2:6H2O mole vol.= 129.5700 cc mole wt.= 203.3000 g 3 species in reaction 1.000 Mg++ 2.000 Cl- 6.000 H2O * log10 K(298 K) = 4.6274 a= 4.627412646 b= 0.05106637 c= 0 d= -10563.0802 e= 0 f= -52.97961685 Bloedite type= sulfate formula= Na2Mg(SO4)2:4H2O mole vol.= 149.9800 cc mole wt.= 334.4700 g 4 species in reaction 1.000 Mg++ 2.000 Na+ 2.000 SO4-- 4.000 H2O * log10 K(298 K) = -2.3718 a= -2.3717855 b= 0.00357 c= 0 d= 0 e= 0 f= 0 Calcite type= carbonate formula= CaCO3 mole vol.= 36.9300 cc mole wt.= 100.0920 g 2 species in reaction 1.000 CO3-- 1.000 Ca++ * log10 K(298 K) = -8.4799 a= -8.479872816 b= -0.07799321 c= 0 d= 2839.3192 e= 0 f= 31.09331343 Carnallite type= halide formula= KMgCl3:6H2O mole vol.= 172.5800 cc mole wt.= 277.8500 g 4 species in reaction 1.000 K+ 1.000 Mg++ 3.000 Cl- 6.000 H2O * log10 K(298 K) = 4.2874 a= 4.28738512 b= -0.28178438 c= 9.81779e-05 d= 8424.3363 e= -235565.9 f= 92.66741657 Dolomite type= carbonate formula= CaMg(CO3)2 mole vol.= 64.3400 cc mole wt.= 184.4140 g 3 species in reaction 1.000 Ca++ 1.000 Mg++ 2.000 CO3-- * log10 K(298 K) = -17.0827 a= -17.08273566 b= 0 c= 0 d= 2062.2473 e= 0 f= 0 Epsomite type= sulfate formula= MgSO4:7H2O mole vol.= 146.7100 cc mole wt.= 246.4750 g 3 species in reaction 1.000 Mg++ 1.000 SO4-- 7.000 H2O * log10 K(298 K) = -1.8813 a= -1.881265899 b= 0 c= 0 d= -1073.1417 e= 0 f= 0 Gypsum type= sulfate formula= CaSO4:2H2O mole vol.= 74.6900 cc mole wt.= 172.1700 g 3 species in reaction 1.000 Ca++ 1.000 SO4-- 2.000 H2O * log10 K(298 K) = -4.5969 a= -4.596913409 b= -1.43513531 c= 0.000855338 d= 47367.1982 e= -1086550.1 f= 410.2191167 Halite type= halide formula= NaCl mole vol.= 27.0200 cc mole wt.= 58.4400 g 2 species in reaction 1.000 Cl- 1.000 Na+ * log10 K(298 K) = 1.5764 a= 1.57637626 b= 0.73058662 c= -0.000495535 d= 9360.9197 e= -1749318.4 f= -137.0271652 Hexahydrite type= sulfate formula= MgSO4:6H2O mole vol.= 132.5800 cc mole wt.= 228.4600 g 3 species in reaction 1.000 Mg++ 1.000 SO4-- 6.000 H2O * log10 K(298 K) = -1.6264 a= -1.626434324 b= 0.00297531 c= 0 d= 0 e= 0 f= 0 Hydrohalite type= halide formula= NaCl:2H2O mole vol.= 57.9600 cc mole wt.= 94.4700 g 3 species in reaction 1.000 Na+ 1.000 Cl- 2.000 H2O * log10 K(298 K) = 1.5236 a= 1.523623645 b= -1.81627952 c= 0.001033303 d= 24690.3183 e= 1523945.4 f= 477.064711 Hydromagnesite type= carbonate formula= (MgCO3)3:Mg(OH)2:3H2O mole vol.= 169.1300 cc mole wt.= 365.3350 g 4 species in reaction 4.000 Mg++ 3.000 CO3-- 2.000 OH- 3.000 H2O * log10 K(298 K) = -36.7695 a= -36.76954 b= 0 c= 0 d= 5585.4613 e= 0 f= 0 Ikaite type= carbonate formula= CaCO3:6H2O mole vol.= 117.5400 cc mole wt.= 208.1820 g 3 species in reaction 1.000 Ca++ 1.000 CO3-- 6.000 H2O * log10 K(298 K) = -6.5855 a= -6.585452129 b= 0 c= 0 d= -2011.1005 e= 0 f= 0 Kalicinite type= carbonate formula= KHCO3 mole vol.= 46.1400 cc mole wt.= 100.1200 g 2 species in reaction 1.000 K+ 1.000 HCO3- * log10 K(298 K) = 0.1906 a= 0.1906081256 b= 0.00565068 c= 1.49489e-05 d= 0 e= 0 f= 0 Kieserite type= sulfate formula= MgSO4:H2O mole vol.= 56.6000 cc mole wt.= 138.3850 g 3 species in reaction 1.000 Mg++ 1.000 SO4-- 1.000 H2O * log10 K(298 K) = -0.2048 a= -0.2048354659 b= -0.36657234 c= 0.000588992 d= 0 e= 0 f= 0 Landsfordite type= carbonate formula= MgCO3:5H2O mole vol.= 100.8000 cc mole wt.= 174.3970 g 3 species in reaction 1.000 Mg++ 1.000 CO3-- 5.000 H2O * log10 K(298 K) = -5.0767 a= -5.076661638 b= 24.21262132 c= -0.015476732 d= -766987.6164 e= 17593834.6 f= -6642.421975 Magnesite type= carbonate formula= MgCO3 mole vol.= 28.0200 cc mole wt.= 84.3220 g 2 species in reaction 1.000 CO3-- 1.000 Mg++ * log10 K(298 K) = -8.0302 a= -8.030159781 b= 0 c= 0 d= 1348.1804 e= 0 f= 0 Meridianite type= sulfate formula= MgSO4:11H2O mole vol.= 207.4400 cc mole wt.= 318.5350 g 3 species in reaction 1.000 Mg++ 1.000 SO4-- 11.000 H2O * log10 K(298 K) = -1.3085 a= -1.308451382 b= 0.04061372 c= 0 d= 0 e= 0 f= 0 MgCl2:8H2O type= halide formula= MgCl2:8H2O mole vol.= 159.0800 cc mole wt.= 239.3300 g 3 species in reaction 1.000 Mg++ 2.000 Cl- 8.000 H2O * log10 K(298 K) = 4.1671 a= 4.167133777 b= 0.28201417 c= 0 d= -27059.8088 e= 0 f= -171.7369283 MgCl2:12H2O type= halide formula= MgCl2:12H2O mole vol.= 218.1000 cc mole wt.= 311.3900 g 3 species in reaction 1.000 Mg++ 2.000 Cl- 12.000 H2O * log10 K(298 K) = 4.6667 a= 4.666719421 b= 18.27412717 c= -0.014127812 d= 610125.588 e= -54142200.5 f= -2084.495598 Mirabilite type= sulfate formula= Na2SO4:10H2O mole vol.= 219.8000 cc mole wt.= 322.1900 g 3 species in reaction 1.000 SO4-- 2.000 Na+ 10.000 H2O * log10 K(298 K) = -1.2165 a= -1.216454843 b= 0.07613508 c= -4.26568e-05 d= 0 e= 0 f= 0 Na2CO3:7H2O type= carbonate formula= Na2CO3:7H2O mole vol.= 153.7100 cc mole wt.= 232.0970 g 3 species in reaction 2.000 Na+ 1.000 CO3-- 7.000 H2O * log10 K(298 K) = -0.4375 a= -0.437531671 b= 0.02485766 c= 0 d= 0 e= 0 f= 0 Nahcolite type= carbonate formula= NaHCO3 mole vol.= 38.9100 cc mole wt.= 84.0100 g 2 species in reaction 1.000 HCO3- 1.000 Na+ * log10 K(298 K) = -0.3981 a= -0.3980991139 b= 4.09729508 c= -0.002655951 d= -128132.8263 e= 2939222.2 f= -1109.6823 Natron type= carbonate formula= Na2CO3:10H2O mole vol.= 198.7100 cc mole wt.= 286.1420 g 3 species in reaction 1.000 CO3-- 2.000 Na+ 10.000 H2O * log10 K(298 K) = -0.8039 a= -0.8039352951 b= -0.02520158 c= 0.000113891 d= 0 e= 0 f= 0 Nesquehonite type= carbonate formula= MgCO3:3H2O mole vol.= 74.7900 cc mole wt.= 138.3670 g 3 species in reaction 1.000 CO3-- 1.000 Mg++ 3.000 H2O * log10 K(298 K) = -5.3137 a= -5.313724803 b= -0.20362652 c= 0.000337509 d= 0 e= 0 f= 0 Picromerite type= sulfate formula= MgSO4:K2SO4:6H2O mole vol.= 191.7800 cc mole wt.= 402.7200 g 4 species in reaction 1.000 Mg++ 2.000 SO4-- 2.000 K+ 6.000 H2O * log10 K(298 K) = -4.3779 a= -4.377903095 b= 0.20453793 c= -0.000312121 d= 0 e= 0 f= 0 Sylvite type= halide formula= KCl mole vol.= 37.5200 cc mole wt.= 74.5500 g 2 species in reaction 1.000 K+ 1.000 Cl- * log10 K(298 K) = 0.8981 a= 0.8981024475 b= -0.1612449 c= 9.81432e-05 d= -3569.5943 e= 307041.4 f= 28.7315549 Tachyhydrite type= halide formula= CaCl2:(MgCl2)2:12H2O mole vol.= 311.8100 cc mole wt.= 517.5800 g 4 species in reaction 1.000 Ca++ 6.000 Cl- 2.000 Mg++ 12.000 H2O * log10 K(298 K) = 16.9342 a= 16.93423368 b= -0.06028307 c= 0 d= 0 e= 0 f= 0 Thenardite type= sulfate formula= Na2SO4 mole vol.= 53.3300 cc mole wt.= 142.0400 g 2 species in reaction 2.000 Na+ 1.000 SO4-- * log10 K(298 K) = -0.2880 a= -0.288010485 b= 0.0008381 c= 0 d= 0 e= 0 f= 0 Trona type= carbonate formula= Na3H(CO3)2:2H2O mole vol.= 107.0200 cc mole wt.= 226.0320 g 4 species in reaction 3.000 Na+ 1.000 HCO3- 1.000 CO3-- 2.000 H2O * log10 K(298 K) = -1.0175 a= -1.017498437 b= 0.01113429 c= 0 d= 0 e= 0 f= 0 Vaterite type= carbonate formula= CaCO3 mole vol.= 37.7200 cc mole wt.= 100.0920 g 2 species in reaction 1.000 Ca++ 1.000 CO3-- * log10 K(298 K) = -7.9135 a= -7.913451657 b= -0.07799321 c= 0 d= 3074.6881 e= 0 f= 31.09331343 Ice(s) type= formula= H2O mole vol.= 19.6500 cc mole wt.= 18.0150 g 1 species in reaction 1.000 H2O * log10 K(298 K) = 0.1020 a= 0.1020222264 b= -0.2382738 c= 0.000118951 d= 13615.59 e= -365935.2 f= 88.51299377 -end- * Use TEdit to add solid solutions here globally, or add them locally * from the Solid Solutions... dialog in any of the GWB modeling apps. 0 solid solutions -end- 1 gases CO2(g) mole wt.= 44.0130 g chi= -1430.87 3.598 -.00227376 3.47644 -.0104247 8.46271e-6 Pcrit= 73.7646 bar Tcrit= 304.2 K omega= .225 1 species in reaction 1.000 CO2 * log10 K(298 K) = -1.4680 a= -1.467960798 b= 0.01985076 c= 0 d= -6919.5315 e= 669365.1 f= -17.56788061 -end- 6 oxides Na2O mole wt.= 61.9790 g 3 species in reaction -2.000 H+ 2.000 Na+ 1.000 H2O CaO mole wt.= 56.0790 g 3 species in reaction -2.000 H+ 1.000 Ca++ 1.000 H2O HCl mole wt.= 36.4580 g 2 species in reaction 1.000 H+ 1.000 Cl- K2O mole wt.= 94.1990 g 3 species in reaction -2.000 H+ 2.000 K+ 1.000 H2O MgO mole wt.= 40.3090 g 3 species in reaction -2.000 H+ 1.000 Mg++ 1.000 H2O SO3 mole wt.= 80.0610 g 3 species in reaction -1.000 H2O 1.000 SO4-- 2.000 H+ -end- * Virial coefficients. * * The first value on a data line ("a= ") is the virial coefficient * value at 25 C. * * The temperature dependence of the virial coefficients beta0, beta1, * beta2, cphi, theta, lambda, and psi may be specified by appending as many * as five coefficients b-f to a data line. The new correlation equation, * used in this dataset, is * * val = a + b*(Tk-Tr) + c*(Tk2-Tr2) + d*(1/Tk - 1/Tr) + e*(1/Tk2 - 1/Tr2) * + f*ln(Tk/Tr) * * where Tk is absolute temperature and Tr is 298.15 K. Hence, if c-f are * zero (or omitted), then b is the first temperature derivative. * * The legacy correlation equation described in the Thermo Datasets chapter * of the GWB Reference Manual is also acceptable. * * A temperature range of validity may optionally be set for each species pair * or triplet, regardless of the temperature expansion chosen. If no range is * set, the span of the principal temperatures is assumed. * * Input is parsed word-by-word; therefore, there is no need to align data * by column. Ca++ Cl- beta0 a= .304058 b= -.03558926 c= 1.64514e-5 d= 1265.271 e= -3394.2 f= 11.94793 beta1 a= 1.708132 b= -.015417 c= 3.1791e-5 beta2 a= 0.0 cphi a= -.00199 b= .00444735 c= -3.2027e-6 d= 125.363 e= -12466.4 f= -.64691 alpha1 = 2.0 alpha2 = 0.0 Ca++ HCO3- beta0 a= .182545 b= 18.447305 c= -.009989 d= -576520.518 e= 0.0 f= -5661.1237 beta1 a= .300039 b= -.37258767 c= 8.9691e-5 d= 26492.24 e= 0.0 f= 183.13156 beta2 a= 0.0 cphi a= 0.0 alpha1 = 2.0 alpha2 = 0.0 Ca++ OH- beta0 a= -.1747 beta1 a= -.2303 beta2 a= -5.72 cphi a= 0.0 alpha1 = 2.0 alpha2 = 12.0 Ca++ SO4-- beta0 a= .115384 b= -.01120842 c= 1.68444e-5 d= 145.327 e= -6826.8 f= 2.57051 beta1 a= 3.56045 b= .17530628 c= -.000174047 d= -6591.464 e= 103372.0 f= -37.68237 beta2 a= -61.685514 b= -.59337506 c= .000399407 d= 21440.768 e= -359056.7 f= 133.72156 cphi a= .039751 b= -.00274756 c= 3.6688e-6 d= 70.752 e= -1597.7 f= .59046 alpha1 = 1.4 alpha2 = 12.0 Cl- H+ beta0 a= .197946 b= -.00053053 beta1 a= .176822 b= .59473772 c= -.000307166 d= -30287.948 e= 793994.6 f= -205.82977 beta2 a= 0.0 cphi a= -.002891 b= 1.735e-5 c= -5.94e-8 alpha1 = 2.0 alpha2 = 0.0 H+ SO4-- beta0 a= .0298 beta1 a= 0.0 beta2 a= 0.0 cphi a= .0438 alpha1 = 0.0 alpha2 = 0.0 Cl- K+ beta0 a= .048342 b= .01003107 c= -3.7342e-6 d= -758.497 e= 64.0 f= -4.69717 beta1 a= .210434 b= .55331238 c= -.000283943 d= -14898.951 e= -412199.8 f= -173.19076 beta2 a= 0.0 cphi a= -.000839 b= -.00129068 c= 4.911e-7 d= 91.27 e= -11.4 f= .58481 alpha1 = 2.0 alpha2 = 0.0 CO3-- K+ beta0 a= .1288 b= .0011 beta1 a= 1.432996 b= .00436 c= 0.0 d= .001 beta2 a= 0.0 cphi a= 5e-4 alpha1 = 2.0 alpha2 = 0.0 HCO3- K+ beta0 a= -.010702 b= .001 c= 0.0 d= -.001 beta1 a= .0478 b= .00109999 c= 0.0 d= .001 e= 0.0 f= 1e-5 beta2 a= 0.0 cphi a= 0.0 alpha1 = 2.0 alpha2 = 0.0 K+ OH- beta0 a= .1298 beta1 a= .32 beta2 a= 0.0 cphi a= .0041 alpha1 = 2.0 alpha2 = 0.0 K+ SO4-- beta0 a= .003795 b= .00165088 c= 9.746e-7 d= 22.492 e= -540.7 f= .2029 beta1 a= 1.052416 b= -.03159629 c= 2.98397e-5 d= 767.611 e= -16995.7 f= 6.36874 beta2 a= 0.0 cphi a= .014845 b= -.00049111 c= 5.849e-7 d= 6.792 e= -332.0 f= .12817 alpha1 = 2.0 alpha2 = 0.0 Cl- Mg++ beta0 a= .351542 b= .0703283 c= -4.17563e-5 d= -392.241 e= -117885.0 f= -17.65506 beta1 a= 1.821364 b= -6.71036992 c= .004429219 d= -65485.608 e= 13522889.4 f= 1302.23382 beta2 a= 0.0 cphi a= .006507 b= -.00024995 c= 2.418e-7 alpha1 = 2.0 alpha2 = 0.0 HCO3- Mg++ beta0 a= -.009313 b= 8.25084 c= -.00434 d= -273406.172 e= 0.0 f= -2607.1152 beta1 a= .804725 b= -92.77793541 c= .0477642 d= 3203209.695 e= 0.0 f= 29927.1515 beta2 a= 0.0 cphi a= 0.0 alpha1 = 2.0 alpha2 = 0.0 Mg++ SO4-- beta0 a= .126545 b= -.03139609 c= 2.82462e-5 d= 470.866 e= -15937.6 f= 6.08307 beta1 a= 3.491512 b= -.13991327 c= .000161578 d= 2603.294 e= -90018.9 f= 34.29203 beta2 a= -6.243985 b= -6.82364722 c= .007402746 d= 245008.193 e= -3561447.4 f= 1276.67549 cphi a= .05291 b= .00120236 c= -1.9372e-6 d= -6.004 e= 1116.1 f= -.43928 alpha1 = 1.4 alpha2 = 12.0 Cl- MgOH+ beta0 a= -.1 beta1 a= 1.658 beta2 a= 0.0 cphi a= 0.0 alpha1 = 2.0 alpha2 = 0.0 Cl- Na+ beta0 a= .076276 b= .00613645 c= -1.1006e-6 d= -886.777 e= 8942.9 f= -4.19728 beta1 a= .280431 b= .2944375 c= -.000147476 d= -8677.858 e= -191956.0 f= -94.69966 beta2 a= 0.0 cphi a= .001271 b= .00031974 c= -3.195e-7 d= 52.6 e= -1237.7 f= .07951 alpha1 = 2.0 alpha2 = 0.0 CO3-- Na+ beta0 a= .036205 b= -.02330165 c= 0.0 d= 1108.376 e= 0.0 f= 11.19856 beta1 a= 1.512069 b= -.09989121 c= 0.0 d= 4412.512 e= 0.0 f= 44.58207 beta2 a= 0.0 cphi a= .0052 alpha1 = 2.0 alpha2 = 0.0 HCO3- Na+ beta0 a= .028002 b= -.01445932 c= 0.0 d= 682.886 e= 0.0 f= 6.89959 beta1 a= .044005 b= -.02446734 c= 0.0 d= 1129.389 e= 0.0 f= 11.41086 beta2 a= 0.0 cphi a= 0.0 alpha1 = 2.0 alpha2 = 0.0 Na+ OH- beta0 a= -.079596 b= -.40580835 c= .000231103 d= 13870.605 e= -318176.0 f= 120.12506 beta1 a= .253083 b= -.30719174 c= .000185849 d= 10166.406 e= -233205.9 f= 88.04521 beta2 a= 0.0 cphi a= .004116 b= -.01615845 c= 1.05123e-5 d= 500.658 e= -11484.5 f= 4.3359 alpha1 = 2.0 alpha2 = 0.0 Na+ SO4-- beta0 a= .038071 b= .00595978 c= -1.6429e-6 d= -26.946 e= 945.0 f= -.36262 beta1 a= 1.035408 b= .01819155 c= -8.1292e-6 d= -106.397 e= 4580.4 f= -1.89717 beta2 a= 0.0 cphi a= -.002331 b= -.00053454 c= -2.014e-7 d= -.711 e= 116.1 f= -.04568 alpha1 = 2.0 alpha2 = 0.0 -end- end of beta set, begin with theta set of 2nd virial coefficients Ca++ H+ theta a= .092 Ca++ Mg++ theta a= .124367 b= -.00634242 c= 0.0 d= -983.114 Cl- CO3-- theta a= -.02 Cl- HCO3- theta a= .03 Cl- OH- theta a= -.05 Cl- SO4-- theta a= .045973 b= .00128989 c= -1.378e-6 d= -35.626 e= 794.3 f= -.29988 CO3-- HCO3- theta a= -.04 Ca++ K+ theta a= .056416 b= -.00454 c= 0.0 d= -284.94 H+ K+ theta a= .005 K+ Mg++ theta a= .1167 H+ Mg++ theta a= .1 Ca++ Na+ theta a= .048535 b= -.00159002 c= 1.6783e-6 d= 39.673 e= -967.4 f= .36653 H+ Na+ theta a= .036 K+ Na+ theta a= -.00948 b= -.00369038 c= 0.0 d= 612.415 e= 0.0 f= 3.02995 Mg++ Na+ theta a= .07 CO3-- OH- theta a= .1 CO3-- SO4-- theta a= .02 HCO3- SO4-- theta a= .01 OH- SO4-- theta a= -.013 -end- end of theta set, begin with lambda set Ca++ CO2 lambda a= .164379 b= -8.101555 c= .00442472 d= 245541.544 e= 0.0 f= 2452.50972 Cl- CO2 lambda a= .02048 b= .9964326 c= -.00052122 d= -33159.618 e= 0.0 f= -315.82788 CO2 K+ lambda a= .044942 b= 1.7670079 c= -.0009487 d= -55954.193 e= 0.0 f= -546.07447 CO2 Mg++ lambda a= .144733 b= -.541843 c= .00038812 d= 3589.474 e= 0.0 f= 104.34527 CO2 Na+ lambda a= .081474 b= -3.326566 c= .0017532 d= 109399.341 e= 0.0 f= 1047.02157 CO2 SO4-- lambda a= .138973 b= 1.8270948 c= -.00114272 d= -33927.762 e= 0.0 f= -457.01574 -end- end of lambda set, begin with psi set Ca++ Cl- H+ psi a= -.0142 Ca++ Cl- Mg++ psi a= -.02381 b= .01303773 c= 0.0 d= -981.659 e= 0.0 f= -7.4062 Ca++ Mg++ SO4-- psi a= .024 Cl- CO3-- K+ psi a= .004 Cl- CO3-- Na+ psi a= .008656 b= .00037348 c= -4.315e-7 d= -6.96 e= 227.1 f= -.08625 Cl- HCO3- Mg++ psi a= -.096 Cl- HCO3- Na+ psi a= -.012777 b= .00042061 c= -5.501e-7 d= -6.334 e= 279.0 f= -.10633 Ca++ Cl- OH- psi a= -.025 Cl- K+ OH- psi a= -.006 Cl- Na+ OH- psi a= -.006 Ca++ Cl- SO4-- psi a= -.054444 b= .00202214 c= -2.5738e-6 d= -27.382 e= 1303.4 f= -.49859 Cl- K+ SO4-- psi a= -.003829 b= .00036001 c= -6.009e-7 d= -9.341 e= 334.0 f= -.12911 Cl- Mg++ SO4-- psi a= -.01833 b= -.00019719 c= 1.618e-7 d= -21.244 e= -66.2 f= .02933 Cl- Na+ SO4-- psi a= -.001451 b= -.00056411 c= 5.28e-7 d= 12.605 e= -309.6 f= .1146 CO3-- HCO3- K+ psi a= .012 CO3-- HCO3- Na+ psi a= .002 Ca++ Cl- K+ psi a= -.028561 b= .00025428 c= 0.0 d= -13.439 Ca++ K+ SO4-- psi a= -.028561 b= .00025428 c= 0.0 d= -13.439 Cl- H+ K+ psi a= -.0114 H+ K+ SO4-- psi a= .130006 b= .005456 Cl- K+ Mg++ psi a= -.049483 b= -8.75e-6 c= 0.0 d= -28.991 K+ Mg++ SO4-- psi a= -.124362 b= .00150172 c= -1.9823e-6 d= -8.156 e= 954.2 f= -.36908 Cl- H+ Mg++ psi a= -.0077 Cl- Mg++ MgOH+ psi a= .028 Ca++ Cl- Na+ psi a= -.003297 b= -.01299 c= 1.106e-5 d= 0.0 e= 0.0 f= 1.8475 Ca++ Na+ SO4-- psi a= -.073409 b= .23794424 c= -.00024367 d= -7353.945 e= 143653.4 f= -53.26546 Cl- H+ Na+ psi a= -.004 Cl- K+ Na+ psi a= -.002539 b= .00146803 c= 0.0 d= -204.354 e= 0.0 f= -1.09448 CO3-- K+ Na+ psi a= .003 HCO3- K+ Na+ psi a= -.0079 K+ Na+ SO4-- psi a= .003969 b= .03628726 c= -3.72313e-5 d= -1192.758 e= 21474.2 f= -7.92204 Cl- Mg++ Na+ psi a= -.008172 b= 5.446e-5 c= 0.0 d= 1.994 Mg++ Na+ SO4-- psi a= -.009911 b= .00124948 c= -1.3145e-6 d= -36.718 e= 447.0 f= -.15613 CO3-- Na+ OH- psi a= -.017 CO3-- K+ SO4-- psi a= -.009 CO3-- Na+ SO4-- psi a= .004501 b= -.00098138 c= 1.2522e-6 d= 9.126 e= -627.3 f= .24028 HCO3- Mg++ SO4-- psi a= -.161 HCO3- Na+ SO4-- psi a= -.005 K+ OH- SO4-- psi a= -.05 Na+ OH- SO4-- psi a= -.009 CO3-- K+ OH- psi a= -.01 Ca++ Cl- CO2 psi a= -.014131 b= -.018002 c= -2.47349e-5 d= 5256.844 e= 0.0 f= 27.37745 Cl- CO2 H+ psi a= -.004705 b= -.470474 c= .000240526 d= 16334.389 e= 0.0 f= 152.38388 Cl- CO2 K+ psi a= -.01207 b= -.257891 c= .000147333 d= 6853.264 e= 0.0 f= 73.79977 CO2 K+ SO4-- psi a= -.000358 b= -2.860763 c= .001951086 d= 30756.867 e= 0.0 f= 611.37561 Cl- CO2 Mg++ psi a= -.009847 b= -.772286 c= .000391603 d= 27726.81 e= 0.0 f= 253.62319 CO2 Mg++ SO4-- psi a= -.041586 b= -4.608331 c= .002489207 d= 143162.608 e= 0.0 f= 1412.3029 Cl- CO2 Na+ psi a= -.000572 b= -.258005 c= .000147823 d= 6879.031 e= 0.0 f= 73.74512 CO2 Na+ SO4-- psi a= -.037454 b= 37.930519 c= -.0189473 d= -1399082.37 e= 0.0 f= -12630.27457 -end- end of psi set * * References. * * Marion, G.M., 2001. Carbonate mineral solubility at low temperatures * in the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system. * Geochimica et Cosmochimica Acta, 65(12), 1883-1896. * * Marion, G.M., and J.S. Kargel, 2008. Cold aqueous planetary * geochemistry with FREZCHEM: From modeling to the search for life * at the limits. Springer, Berlin/Heidelberg. * * Marion, G.M., and R.E. Farren, 1999. Mineral solubilities in the * Na-K-Mg-Ca-Cl-SO4-H2O system: A re-evaluation of the sulfate * chemistry in the Spencer-Moller-Weare model. Geochimica et * Cosmochimica Acta, 63(9), 1305-1318. * * Marion, G.M., and S.A. Grant, 1994. FREZCHEM: A chemical-thermodynamic * model for aqueous solutions at subzero temperatures. Cold Regions * Research & Engineering Laboratory, U.S. Army Corps of Engineers, * Hanover, NH. * * Marion, G.M., J.S. Kargel, D.C. Catling, and S.D. Jakubowski, 2005. * Effects of pressure on aqueous chemical equilibria at subzero * temperatures with applications to Europa. Geochimica et * Cosmochimica Acta, 69(2), 259–274. * * Spencer, R.J., N. Moller, and J.H. Weare, 1990, The prediction of * mineral solubilities in natural waters: A chemical equilibrium * model for the Na-K-Ca-Mg-Cl-SO4-H2O system at temperatures below * 25 C. Geochimica et Cosmochimica Acta, 54(3), 575-590. * * Toner, J.D. and D.C. Catling, 2017. A low-temperature aqueous * thermodynamic model for the Na-K-Ca-Mg-Cl-SO4 system * incorporating new experimental heat capacities in Na2SO4, K2SO4, * and MgSO4 solutions. Journal of Chemical & Engineering Data 2017 * 62 (10), 3151-3168 * * Toner, J.D., and R.S. Sletten, 2013. The formation of Ca-Cl enriched * groundwaters in the Dry Valleys of Antarctica by cation exchange * reactions: Field measurements and modeling of reactive transport. * Geochimica et Cosmochimica Acta, 110, 84–105. * * * Sources for gas fugacity coefficient calculations. * * Peng, D.Y. and D.B. Robinson, 1976. A new two-constant equation of * state. Industrial and Engineering Chemistry Fundamentals 15, 59-64. * * Reid, R.C., J.M. Prausnitz and B.E. Poling, 1987, The Properties of * Gases and Liquids. McGraw Hill, 741 p. * * Spycher, N.F. and M.H. Reed, Fugacity coefficients of H2, CO2, CH4, * H2O and of H2O-CO2-CH4 mixtures: A virial equation treatment for * moderate pressures and temperatures applicable to calculations of * hydrothermal boiling. Geochimica et Cosmochimica Acta 52, 739-749. * * Tsonopoulos, C., 1974, An empirical correlation of second virial * coefficients. AIChE Journal 20, 263-272. *